• Title/Summary/Keyword: gait phase classification

Search Result 7, Processing Time 0.025 seconds

Gait Phases Classification using Joint angle and Ground Reaction Force: Application of Backpropagation Neural Networks (관절각과 지면반발력을 이용한 보행 단계의 분류: 역전파 신경망 적용)

  • Chae, Min-Gi;Jung, Jun-Young;Park, Chul-Je;Jang, In-Hun;Park, Hyun-Sub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.644-649
    • /
    • 2012
  • This paper proposes the gait phase classifier using backpropagation neural networks method which uses the angle of lower body's joints and ground reaction force as input signals. The classification of a gait phase is useful to understand the gait characteristics of pathologic gait and to control the gait rehabilitation systems. The classifier categorizes a gait cycle as 7 phases which are commonly used to classify the sub-phases of the gait in the literature. We verify the efficiency of the proposed method through experiments.

Gait Type Classification Using Pressure Sensor of Smart Insole

  • Seo, Woo-Duk;Lee, Sung-Sin;Shin, Won-Yong;Choi, Sang-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.17-26
    • /
    • 2018
  • In this paper, we propose a gait type classification method based on pressure sensor which reflects various terrain and velocity variations. In order to obtain stable gait classification performance, we divide the whole gait data into several steps by detecting the swing phase, and normalize each step. Then, we extract robust features for both topographic variation and speed variation by using the Null-LDA(Null-Space Linear Discriminant Analysis) method. The experimental results show that the proposed method gives a good performance of gait type classification even though there is a change in the gait velocity and the terrain.

Human Gait-Phase Classification to Control a Lower Extremity Exoskeleton Robot (하지근력증강로봇 제어를 위한 착용자의 보행단계구분)

  • Kim, Hee-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.479-490
    • /
    • 2014
  • A lower extremity exoskeleton is a robot device that attaches to the lower limbs of the human body to augment or assist with the walking ability of the wearer. In order to improve the wearer's walking ability, the robot senses the wearer's walking locomotion and classifies it into a gait-phase state, after which it drives the appropriate robot motions for each state using its actuators. This paper presents a method by which the robot senses the wearer's locomotion along with a novel classification algorithm which classifies the sensed data as a gait-phase state. The robot determines its control mode using this gait-phase information. If erroneous information is delivered, the robot will fail to improve the walking ability or will bring some discomfort to the wearer. Therefore, it is necessary for the algorithm constantly to classify the correct gait-phase information. However, our device for sensing a human's locomotion has very sensitive characteristics sufficient for it to detect small movements. With only simple logic like a threshold-based classification, it is difficult to deliver the correct information continually. In order to overcome this and provide correct information in a timely manner, a probabilistic gait-phase classification algorithm is proposed. Experimental results demonstrate that the proposed algorithm offers excellent accuracy.

Gait-based Human Identification System using Eigenfeature Regularization and Extraction (고유특징 정규화 및 추출 기법을 이용한 걸음걸이 바이오 정보 기반 사용자 인식 시스템)

  • Lee, Byung-Yun;Hong, Sung-Jun;Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • In this paper, we propose a gait-based human identification system using eigenfeature regularization and extraction (ERE). First, a gait feature for human identification which is called gait energy image (GEI) is generated from walking sequences acquired from a camera sensor. In training phase, regularized transformation matrix is obtained by applying ERE to the gallery GEI dataset, and the gallery GEI dataset is projected onto the eigenspace to obtain galley features. In testing phase, the probe GEI dataset is projected onto the eigenspace created in training phase and determine the identity by using a nearest neighbor classifier. Experiments are carried out on the CASIA gait dataset A to evaluate the performance of the proposed system. Experimental results show that the proposed system is better than previous works in terms of correct classification rate.

Gait Phase Recognition based on EMG Signal for Stairs Ascending and Stairs Descending (상·하향 계단보행을 위한 근전도 신호 기반 보행단계 인식)

  • Lee, Mi-Ran;Ryu, Jae-Hwan;Kim, Sang-Ho;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.181-189
    • /
    • 2015
  • Powered prosthesis is used to assist walking of people with an amputated lower limb and/or weak leg strength. The accurate gait phase classification is indispensable in smooth movement control of the powered prosthesis. In previous gait phase classification using physical sensors, there is limitation that powered prosthesis should be simulated as same as the speed of training process. Therefore, we propose EMG signal based gait phase recognition method to classify stairs ascending and stairs descending into four steps without using physical sensors, respectively. RMS, VAR, MAV, SSC, ZC, WAMP features are extracted from EMG signal data and LDA(Linear Discriminant Analysis) classifier is used. In the training process, the AHRS sensor produces various ranges of walking steps according to the change of knee angles. The experimental results show that the average accuracies of the proposed method are about 85.6% in stairs ascending and 69.5% in stairs descending whereas those of preliminary studies are about 58.5% in stairs ascending and 35.3% in stairs descending. In addition, we can analyze the average recognition ratio of each gait step with respect to the individual muscle.

sEMG Signal based Gait Phase Recognition Method for Selecting Features and Channels Adaptively (적응적으로 특징과 채널을 선택하는 sEMG 신호기반 보행단계 인식기법)

  • Ryu, J.H.;Kim, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.19-26
    • /
    • 2013
  • This paper propose a surface EMG signal based gait phase recognition method that selects features and channels adaptively. The proposed method can be used to control powered artificial prosthetic for lower limb amputees and can reduce overhead in real-time pattern recognition by selecting adaptive channels and features in an embedded device. The method can enhance the classification accuracy by adaptively selecting channels and features based on sensitivity and specificity of each subject because EMG signal patterns may vary according to subject's locomotion convention. In the experiments, we found that the muscles with highest recognition rate are different between human subjects. The results also show that the average accuracy of the proposed method is about 91% whereas those of existing methods using all channels and/or features is about 50%. Therefore we assure that sEMG signal based gait phase recognition using small number of adaptive muscles and corresponding features can be applied to control powered artificial prosthetic for lower limb amputees.

  • PDF

A Fuzzy Min-Max Neural Network(FMMNN) Based Gait Phase Classification Method using Electromyography(EMG) Signal (근전도 신호를 이용한 퍼지 최대-최소 신경망 기반 보행 단계 분류 방법)

  • Yi, Tae-Youb;Lee, Sang-Wan;Jang, Hyo-Young;Kim, Heon-Hui;Jung, Jin-Woo;Bien, Zeung-Nam
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.841-847
    • /
    • 2007
  • 최근 삶의 수준의 향상과 의학 기술의 발전으로 노인 인구가 증가하고 있다. 하지만 늘어나는 노인 인구에 비례하여 신체적 노화로 거동이 어려운 노인의 수 또한 증가하는 추세이다. 실제로 많은 노인 인구가 거동이 불편해 정상적인 생활을 하지 못하고 있기 때문에 보행 시 적절한 힘을 보조해 줄 수 있는 보행 보조 장치의 개발이 필요하다. 이 같은 보행 보조 장치를 개발함에 있어 보행자의 보행 패턴이 고려된다면 보행자의 걸음걸이에 맞춰 자연스럽게 힘을 보조해 줄 수 있기 때문에 보행자의 보행 단계 분류에 관한 연구가 선행되어야 한다. 그래서 본 논문에서는 하지 근전도 신호를 이용해 보행 단계를 구분하는 방법을 제안하고자 한다. 근전도 신호는 근육이 움직일 때 발생하는 아주 작은 전기적인 신호이다. 근전도 신호는 작은 잡음에도 민감하며, 전극을 부착하는 근육의 위치에 따라서도 값의 차이가 크기 때문에 근전도 신호의 획득 및 처리 방법이 중요하다. 위를 위해 피실험자 별 근육의 위치와 보행 속도를 달리하여 근전도 신호를 획득하고 획득한 신호로부터 여러 특징 값을 추출한다. 그리고 새로운 데이터에 대해 적응성이 강하고 시간에 따라 변하는 근전도 신호의 특성을 잘 반영할 수 있으며 각 집합(class)의 비선형 분리가 가능한 퍼지 최대-최소 신경망(Fuzzy Min-Max Neural Network: FMMNN)을 이용해 보행 단계를 분류해 본다. 실험 결과를 통해 제안한 방법의 타당성을 검증해 보고 보행자, 보행속도, 근전도 측정을 위한 근육의 위치가 보행 패턴 분류에 미치는 영향을 알아본다.

  • PDF