• Title/Summary/Keyword: gain saturation

Search Result 178, Processing Time 0.026 seconds

Gain Characteristics of Fabry-Perot Type AlGaAs Semiconductor Laser Amplifier (Fabry-Perot 공진기형 AlGaAs 반도체 레이저 증폭기의 이득특성)

  • 김도훈;권진혁
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.67-73
    • /
    • 1991
  • The unsaturated signal gain, signal gain bandwidth, and saturation power which are important parameters determining characteristics of the semiconductor laser amplifier were measured for an AlGaAs Fabry-Perot cavity type laser amplifier and compared with the results of Fabry-Perot formula. The unsaturated signal gain 25 dB is obtained near oscillation thereshold current at $0.7\mu\textrmW$ input power. The corresponding signal gain bandwidth was about 3 GHz. Also. We measured the variation of the saturation signal gain and saturation power.

  • PDF

Design of Scheduled $H_{\infty}$ Control for Linear Systems with Limited Actuator Capacity (제한된 구동기 용량을 갖는 선형 시스템의 스케듈링 $H_{\infty}$ 제어기 설계)

  • 송용희;김진훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.9
    • /
    • pp.622-629
    • /
    • 2004
  • In practical control systems, the capacity of actuators is limited and this degrades the system performances and it is often a source of instability. To use full capacity of actuators, we adopt the gain scheduled control permitting the over saturation in controls. The basic idea of gain scheduled control is to use a higher gain control when the state variables are smaller and a lower gain control when the state variables are larger. First, we derive a constant H control and a reachable set while satisfying the degree of over saturation. Next, we divide this set into nested subsets and find $H_{\infty}$ controls at rack subsets while satisfying the degree of over saturation. Finally, the control gain is applied according to the status of states. Note that all procedures are done by solving linear matrix inequalities(LMI). Finally, we show the validity and applicability of our proposed control using the simulations of a six-story building subjected to the earthquake excitation.

Phenomenological Nonlinear Gain Saturation Effect on the Noise Characteristics of a Multi-electrode DBR Laser with Continuous Frequency Tuning (연속 파장 가변시 현상론적인 비선형 이득포화효과가 다전극 DBR 레이저의 잡음특성에 미치는 영향)

  • 이석목;최원준;한일기;김회종;우덕하;김선호;이정일;감광남;박홍이
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.135-141
    • /
    • 1995
  • Phenomenological nonlinear gain saturation effect on the noise characteristics of a multi-electrode DBR laser, when the lasing wavelength changes continuously, is presented theoretically. Using the optical transmission line theory, noise characteristics reliant on output power are analyzed by taking into account both the spontaneous enhancement factor K due to the distribution of the spontaneous emission along the active cavity and the nonlinear gain saturation effect. Spontaneous emission rate was increased due to an increase in injected current into the passive section, which in turn lead to increase in relative intensity noise (RIN) and frequency noise. Phenomenological nonlinear gain saturation was found to have significant effect on RIN and frequency noise characteristics. However. Iinewidth was found to decrease due to a phenomenological nonlinear gain saturation effect. ffect.

  • PDF

PID Autotuning Algorithm Based on Saturation Function Feedback

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.263-269
    • /
    • 1998
  • We use the slope bounded saturation nonlinear feedback element instead of relay to find ultimate gain and period of linear plant. Saturation nonlinear element reduces the high harmonics of plant output. The reduction of high harmonics improve the accuracy of describing function method used to find ultimate gain and period. We give a simple procedure to find ultimate gain and period with saturation nonlinear element. A PID controller design method with known time delay element is also given, which is very useful when oscillation is not occurred with nonlinear element.

  • PDF

PID Autotuning Algorithm with an Asymmetric Self-oscillation (비대칭 자기 진동에 대한 PID 자동동조 알고리듬)

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.6 no.2 s.11
    • /
    • pp.128-135
    • /
    • 2002
  • We use the saturation nonlinear feedback element to generate self-oscillation in order to find an ultimate gain and period of linear plant. The use of saturation nonlinear feedback element can improve accuracy of an ultimate gain and period of unknown linear plant. An ultimate gain and period of linear plant can be used to tune a PID controller parameters. It is possible that an asymmetric oscillation can be occurred under the special circumstances such as with static load disturbance. We analyze an asymmetric self-oscillation. As the results of an analysis, we propose a method to find an ultimate gain and period of linear Plant under the asymmetric self-oscillation.

  • PDF

[ $H_{\infty}$ ] Control of Time-Delayed Linear Systems with Limited Actuator Capacities (제한된 구동기 용량을 갖는 시간지연 선형시스템의 $H_{\infty}$ 제어)

  • Yi, Yearn-Gui;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1648-1654
    • /
    • 2007
  • In this paper, we consider the design of $H_\infty$ high-gain state feedback control for time-delayed linear systems with limited actuator capacities. The high-gain control means that the control permits the predetermined degree of saturation. Based on new Lyapunov-Krasovskii functional, we derive a result in the form of matrix inequalities. The matrix inequalities are consisted of LMIs those confirm the positive definiteness of Lyapunov- Krasovskii functional, satisfaction of predetermined degree of saturation, reachable set and $L_2$ gain constraint. The result is dependent on the bound of time-delay and its rate, predetermined degree of saturation, actuator capacity, and the allowed size of disturbances. Finally, we give a numerical example to show the effectiveness and usefulness of our result.

Measurements of Saturation Energy Denity and Small Signal Gain Coefficient Dependent on the Active Gas Pressure in XeCl Laser Amplifier (XeCl 레이저 증폭기의 활성기체 압력에 따른 포화 에너지 밀도와 소신호 이득계수 측정)

  • 김규옥;김용평
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.457-460
    • /
    • 1994
  • Dependence of saturation energy density and small signal gain coefficient on the active gas pressure in XeCl laser amplifier has been investigated. The saturation energy density was increased almost linearly as 1.3, 1.45, 2.0, and $2.3mJ/\textrm{cm}^2$ when the pressure of Xe and He were 30 and 2000 mb, and the pressure of HC] was varied as 34, 52, 73, and 92 mb. Whereas the small signal gain coefficient was measured to be 6.5, 7.5, 7.0, 7.0 %/cm, which shows that the small signal gain did not varies not so much.o much.

  • PDF

Implementation of the Self-tuning Control Algorithm with an Input- amplitude Constraint (제어입력 크기가 제한되는 자기동조 제어알고리즘의 구현에 관한 연구)

  • 장효환;정회범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2153-2161
    • /
    • 1993
  • Self-tuning control algorithms for an input-amplitude constrained system are developed and implemented. Magnitude of control input for small motors is generally restricted to narrow bound due to actuator saturation. The gain-adjusted control algorithm and the bounded-gain control algorithm proposed in this study yield smoother control input variations within the magnitude constraints comparing with the existing Clarke's suboptimal control algorithm. In the gain-adjusted control algorithm, the feedforward gain is adjusted using maximum gain, while in the bounded-gain control algorithm, the feedforward gain is bounded using weighting factor. For the DC servo motor control, the system performances of the proposed algorithms are compared with those of the existing algorithm by computer simulation and experiment. It is shown that the input variations of the proposed algorithms are smoother as compared with the existing algorithm.

Design of Gain-Scheduled Controllers for Linear Systems with Input Constraints (제한된 입력 특성을 갖는 선형 시스템의 이득 계획 제어기 설계)

  • Song, Yong-Hui;Kim, Jin-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.335-338
    • /
    • 2003
  • In this paper, we considered the design of gain scheduled controllers for linear systems with input constraints. The gain scheduled control is a method that uses larger control gain when the states are smaller, and smaller gain when it is larger. By doing this, we can use a full actuator capacity. Also we allow the over-saturation in control to improve the performance. First, we derive a control and a reachable set expressed as LMI form, while minimizing the $L_2$ gain from the disturbance to the measured output. Next, the reachable set is divided as nested subsets, and the control gains are obtained by minimizing the $L_2$ gain at each nested subset. Finally, the control gains are scheduled according to the status of states, i.e., the nested-subset in which the states are located. Performance of the proposed technique is illustrated through simulations of a six-story building subject to earthquake ground motion.

  • PDF

A Study on the Optimization and the Transient Phenomena of the $Pr^{3+}$ doped Fiber Amplifier ($Pr^{3+}$이 도핑된 광섬유증폭기의 최적화 및 과도현상에 관한 연구)

  • 이재명;지명훈;염진용;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.333-336
    • /
    • 2001
  • The transient response in PDFA(Praseodymium-Doped Fiber Amplifier) is theoretically investigated. The PDFA has the spectral gain band in 1.3${\mu}{\textrm}{m}$. The transient model includes the transient buildup of the population inversion, the pump power, and the signal power and their transient variation along the fiber amplifier. The numerical analysis of transient model can predict the gain saturation, the variation of pump power and the gain as a function of the fiber length. It also shows the gain saturation and recovery effects depending on the pumping rate lead to distortion and saturation in the amplification of optical pulse. The results of numerical analysis, for the case of the Pr ion concentration of 1000ppm and the pump power of 0.5W the gain saturation is obtained 30dB at the length of 5m and the saturation time of upper level is 250 $mutextrm{s}$.

  • PDF