• Title/Summary/Keyword: gain matrix

Search Result 421, Processing Time 0.026 seconds

ROBUST OUTPUT FEEDBACK $H\infty$ CONTROL FOR UNCERTAIN DELAYED SINGULAR SYSTEMS

  • Kim, Jong-Hae;Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.513-522
    • /
    • 2006
  • This paper considers a robust output feedback $H\infty$ controller design method for singular systems with time-varying delay in state and parameter uncertainty in system matrix by an LMI approach and observer based technique, which can be solved efficiently by convex optimization. The sufficient condition for the existence of controller and the controller design method are presented by strict LMI(linear matrix inequality) approach. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables.

A Tracking Gain-Up Controller Design for Controlling the Shake of Actuator (엑츄에이터 흔들림 제어를 위한 트랙킹 Gain-Up 제어기 설계)

  • Jin, Kyoung-Bog;Lee, Moon-Noh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.988-993
    • /
    • 2009
  • In this paper, we deal with a tracking gain-up controller design problem to control effectively the shake of tracking actuator after a track seek. A minimum tracking gain-up open-loop gain can be calculated by estimating the shake of tracking actuator and a desired transient specification is considered to diminish effectively the shake of actuator. A tracking gain-up controller is designed by considering a robust $H_{\infty}$ control problem with a regional stability constraint. The proposed tracking gain-up controller design method is applied to the track-following system of a DVD recording device and is evaluated through the experimental results.

Design of a Robust Controller Using Genetic Algorithms and LMI Design Method (유전자 알고리즘과 LMI 설계 방법을 이용한 강인 제어기의 설계)

  • Lee, Moon-Noh;Lee, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.619-624
    • /
    • 2011
  • This paper presents a controller design method for a robust control problem with multiple constraints using genetic algorithms and LMI design method. A robust $H_{\infty}$ constraint with loop shaping and pole placement is used to address disturbance attenuation with error limits and desired transient specifications, in spite of the plant uncertainties and disturbances. In addition, a loop gain constraint is considered so as not to enlarge the loop gain unnecessarily. The robust $H_{\infty}$ constraint and pole placement constraint can be expressed in terms of two matrix inequalities and the loop gain constraint can be considered as an objective function so that genetic algorithms can be applied. Accordingly, a robust controller can be obtained by integrating genetic algorithms with LMI approach. The proposed controller design method is applied to a track-following system of an optical disk drive and is evaluated through simulation results.

L-gained State Feedback Control for Continuous Fuzzy Systems with Time-Delay (시간 지연 연속 시간 퍼지 시스템에 대한 L-이득값 상태 궤환 제어)

  • Lee, Dong-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.762-767
    • /
    • 2008
  • This paper introduces a $L_{\infty}$-gain state feedback fuzzy controller design for the time delay nonlinear system represented by Takagi-Sugeno(T-S) fuzzy model. First, the T-S fuzzy model is employed to represent the time delay nonlinear system. Next based on the fuzzy model, a fuzzy state feedback controller is developed to achieve $L_{\infty}$-gain performance. Finally, sufficient conditions are derived for $L_{\infty}$-gain performance. The sufficient conditions are formulated in the format of linear matrix inequalities (LMIs). The effectiveness of the proposed controller design methonology is finally demonstrated through numerical simulations.

Design of a Nonlinear Observer for Mechanical Systems with Unknown Inputs (미지 입력을 가진 기계 시스템을 위한 비선형 관측기 설계)

  • Song, Bongsob;Lee, Jimin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.411-416
    • /
    • 2016
  • This paper presents the design methodology of an unknown input observer for Lipschitz nonlinear systems with unknown inputs in the framework of convex optimization. We use an unknown input observer (UIO) to consider both nonlinearity and disturbance. By deriving a sufficient condition for exponential stability in the linear matrix inequality (LMI) form, existence of a stabilizing observer gain matrix of UIO will be assured by checking whether the quadratic stability margin of the error dynamics is greater than the Lipschitz constant or not. If quadratic stability margin is less than a Lipschitz constant, the coordinate transformation may be used to reduce the Lipschitz constant in the new coordinates. Furthermore, to reduce the maximum singular value of the observer gain matrix elements, an object function to minimize it will be optimally designed by modifying its magnitude so that amplification of sensor measurement noise is minimized via multi-objective optimization algorithm. The performance of UIO is compared to a nonlinear observer (Luenberger-like) with an application to a flexible joint robot system considering a change of load and disturbance. Finally, it is validated via simulations that the estimated angular position and velocity provide true values even in the presence of unknown inputs.

Design of a Tracking Gain-up Controller for the Vibration Suppression of Tracking Actuator (트랙킹 액추에이터의 진동 억제를 위한 트랙킹 Gain-up 제어기 설계)

  • Lee, Moonnoh;Jin, Kyoung Bog
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.356-364
    • /
    • 2013
  • This paper presents a tracking gain-up controller design method to control effectively the vibration of tracking actuator caused by external shocks and remaining velocity after seek control. A pole placement constraint is considered to assure a desired transient response against the vibration of tracking actuator. A loop gain-up constraint is introduced to hold the tracking gain-up loop gain and control bandwidth within allowable bounds. The pole placement constraint is expressed by a matrix inequality and the loop gain-up constraint is considered as an objective function so that genetic algorithm can be applied. Finally, a tracking gain-up controller is obtained by integrating a genetic algorithm with LMI design approach. The proposed tracking gain-up controller design method is applied to the track-following system of a DVD recording device and its effectiveness is evaluated through the experimental results.

Unified Parametric Approaches for Observer Design in Matrix Second-order Linear Systems

  • Wu Yun-Li;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.159-165
    • /
    • 2005
  • This paper designs observers for matrix second-order linear systems on the basis of generalized eigenstructure assignment via unified parametric approach. It is shown that the problem is closely related with a type of so-called generalized matrix second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass system is utilized to show the effect of the proposed approaches.

Novel Calibration Method of Noise Figure Analyzer and Measurement of Noise Correlation Matrix (잡음지수분석기의 새로운 교정방법과 잡음상관행렬 측정)

  • Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.491-499
    • /
    • 2018
  • The conventional calibration method for a noise figure analyzer is to use a noise source. This method is accompanied by a significant irregular ripple in the measurement results, because it does not consider the mismatch of the noise source and noise figure analyzer during calibration. A novel calibration method of the noise figure analyzer is proposed that considers the mismatch between the noise power and noise figure analyzer. A novel noise correlation matrix measurement technique using this method is also proposed. The method determines the noise correlation matrix and the gain of the uncorrected noise figure analyzer using uncorrected noise powers. Then, having determined the gain and noise correlation matrix, the effects of noise figure analyzers were corrected in the measurement results of the noise correlation matrix for the device under test (DUT). Through the proposed method, the measured noise parameters of a DUT showed the same degree of irregular ripples as the result of using the relative noise ratio.

Design of Scheduled $H_{\infty}$ Control for Linear Systems with Limited Actuator Capacity (제한된 구동기 용량을 갖는 선형 시스템의 스케듈링 $H_{\infty}$ 제어기 설계)

  • 송용희;김진훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.9
    • /
    • pp.622-629
    • /
    • 2004
  • In practical control systems, the capacity of actuators is limited and this degrades the system performances and it is often a source of instability. To use full capacity of actuators, we adopt the gain scheduled control permitting the over saturation in controls. The basic idea of gain scheduled control is to use a higher gain control when the state variables are smaller and a lower gain control when the state variables are larger. First, we derive a constant H control and a reachable set while satisfying the degree of over saturation. Next, we divide this set into nested subsets and find $H_{\infty}$ controls at rack subsets while satisfying the degree of over saturation. Finally, the control gain is applied according to the status of states. Note that all procedures are done by solving linear matrix inequalities(LMI). Finally, we show the validity and applicability of our proposed control using the simulations of a six-story building subjected to the earthquake excitation.

Yield enhancement of matrix precursor in short carbon fiber reinforced randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra;Verma, Anil
    • Carbon letters
    • /
    • v.19
    • /
    • pp.57-65
    • /
    • 2016
  • Isroaniso matrix precursor synthesized from commercially available petroleum pitch was stabilized in air. The influence of oxygen mass gain during stabilization on the yield of matrix precursor was studied. Additionally, the influence of pressure on the yield of the stabilized matrix precursor in a real system was studied. The fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TGA), yield, yield rate, and yield impact were used to check the effect of stabilization and pressure on the yield of the matrix precursor and the end properties of the composite thereafter. The results showed that the yield increased with stabilization duration up to 20 h whereas it decreased for stabilization duration beyond 20 h. Further results showed that the stabilized matrix precursor for a duration of 5 h could withstand almost two-fold greater hot-pressing pressure without resulting in exudation as compared to that of a 1 h stabilized matrix precursor. The enhanced hot-pressing pressure significantly improved the yield of the matrix precursor. As a consequence, the densification and mechanical properties were increased significantly. Further, the matrix precursor stabilized for a duration of 20 h or more failed to provide proper and uniform binding of the reinforcement.