• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.026 seconds

Real-time Remote Diagnosis and Control System for the Piggery Wastewater Treatment Plant using Neural Networks and fuzzy Logic (신경망과 퍼지를 이용한 축산폐수처리플랜트의 실시간 원격 진단ㆍ제어 시스템)

  • Seo, Hyun-Yong;Kim, Sung-Sin;Bae, Hyun;Jeon, Byung-Hee;Kim, Chang-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.107-110
    • /
    • 2003
  • 산업의 발달과 인구의 증가로 인한 물 사용량 증가와 다양한 폐수들이 끊임없이 발생하고 있다. 회사나 공장들은 이러한 폐수를 처리하기 위한 하ㆍ폐수처리장의 효율적인 운전을 위하여 관리ㆍ제어 시스템을 도입하고 있는 추세이다. 본 논문에서는 김해에 설치되어 있는 축산 폐수를 처리하는 파일럿 플랜트의 공정상태를 원격으로 관리할 수 있는 모니터링 시스템을 바탕으로 퍼지와 신경망을 이용한 실시간 원격 진단 및 제어 시스템을 설계하였다. 또한 여러 경우의 고장 사례를 원격 진단ㆍ제어 시스템에 접목시킴으로써 진단시스템의 성능을 더욱 향상 시켰다. 이러한 진단ㆍ제어 시스템을 이용하여 관리자는 공정상태를 항상 모니터링 할 수 있으며, 진단ㆍ제어 시스템에서 제공하는 경고 및 제어 값을 축산폐수플랜트에 전송함으로써 공정을 보다 효율적이고 안정적으로 진단ㆍ제어할 수 있다.

  • PDF

Estimation of Surface Color with Use of Subjective Feeling: On the Influence of Contrast by Complementary Color

  • Sakamoto, Kazuyoshi;Wada, Mitsuyoshi;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.5 no.2
    • /
    • pp.73-78
    • /
    • 2002
  • The unique colors of paper, that is, blue, green, red, and yellow were used in the estimation of color from the subjective feeling. The monochrome with unique color or the unique color surrounded with the background color was presented. subject gazed the monochrome or the unique color, which was tailed target rotor. The target and background color were the complementary color each other. The various ratios of the area of gazed color and background were taken. Subject answered the level of subjective feeling consisted of pair of adjective items for unique color presented. With the use of the subjective feeling for the target color presented, the estimation of the unique color was cai\ulcornerlied out due to Fuzzy theory and neural networks. The results of color difference between unique color presented and the estimated color gave very small value for the case without background, while the results of the case with background color depended on the ratio of area of presented color and background color till the ration of 2:1, The relation showed the Kirschman's law, The color difference saturated In the increase of area of background with the ratio more than 2:1.

  • PDF

Estimation of surface color with use of subjective feeling: On the influence of contrast by complementary color

  • Sakamoto, Kazuyoshi;Wada, Mitsuyoshi;Min, Byung-Chan
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.261-265
    • /
    • 2002
  • The unique colors of paper, that is, blue, green, red, and yellow were used in the estimation of color from the subjective feeling. The monochrome with unique color or the unique color surrounded with the background color was presented. Subject gazed the monochrome or the unique color, which was called target color. The target and background color were the complementary color each other. The various ratios of the area of gazed color and background were taken. Subject answered the level of subjective feeling consisted of pair of adjective items for unique color presented. With the use of the subjective feeling fer the target color presented, the estimation of the unique color was carried out due to Fuzzy theory and neural networks. The results of color difference between unique color presented and the estimated color gave very small value for the case without background, while the results of the case with background color depended on the ratio of area of presented color and background color till the ration of 2:1, The relation showed the Kirschman's law. The color difference saturated in the increase of area of background with the ratio more than 2:1.

  • PDF

Short Term Load Forecasting Algorithm for Lunar New Year's Day

  • Song, Kyung-Bin;Park, Jeong-Do;Park, Rae-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.591-598
    • /
    • 2018
  • Short term load forecasts complexly affected by socioeconomic factors and weather variables have non-linear characteristics. Thus far, researchers have improved load forecast technologies through diverse techniques such as artificial neural networks, fuzzy theories, and statistical methods in order to enhance the accuracy of load forecasts. Short term load forecast errors for special days are relatively much higher than that of weekdays. The errors are mainly caused by the irregularity of social activities and insufficient similar past data required for constructing load forecast models. In this study, the load characteristics of Lunar New Year's Day holidays well known for the highest error occurrence holiday period are analyzed to propose a load forecast technique for Lunar New Year's Day holidays. To solve the insufficient input data problem, the similarity of the load patterns of past Lunar New Year's Day holidays having similar patterns was judged by Euclid distance. Lunar New Year's Day holidays periods for 2011-2012 were forecasted by the proposed method which shows that the proposed algorithm yields better results than the comprehensive analysis method or the knowledge-based method.

Optimal Placement of Measurement Using GAs in Harmonic State Estimation of Power System (전력시스템 고조파 상태 춘정에서 GA를 미용한 최적 측정위치 선정)

  • 정형환;왕용필;박희철;안병철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.471-480
    • /
    • 2003
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. Among the reasons for its complexity are the system size, conflicting requirements of estimator accuracy, reliability in the presence of transducer noise and data communication failures, adaptability to change in the network topology and cost minimization. In particular, the number of harmonic instruments available is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Genetic Algorithms (GAs) which is widely used in areas such as: optimization of the objective function, learning of neural networks, tuning of fuzzy membership functions, machine learning, system identification and control. This HSE has been applied to the Simulation Test Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using Genetic Algorithms (GAs) in the Harmonic State Estimation (HSE).

A Comparative Study of Estimation by Analogy using Data Mining Techniques

  • Nagpal, Geeta;Uddin, Moin;Kaur, Arvinder
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.621-652
    • /
    • 2012
  • Software Estimations provide an inclusive set of directives for software project developers, project managers, and the management in order to produce more realistic estimates based on deficient, uncertain, and noisy data. A range of estimation models are being explored in the industry, as well as in academia, for research purposes but choosing the best model is quite intricate. Estimation by Analogy (EbA) is a form of case based reasoning, which uses fuzzy logic, grey system theory or machine-learning techniques, etc. for optimization. This research compares the estimation accuracy of some conventional data mining models with a hybrid model. Different data mining models are under consideration, including linear regression models like the ordinary least square and ridge regression, and nonlinear models like neural networks, support vector machines, and multivariate adaptive regression splines, etc. A precise and comprehensible predictive model based on the integration of GRA and regression has been introduced and compared. Empirical results have shown that regression when used with GRA gives outstanding results; indicating that the methodology has great potential and can be used as a candidate approach for software effort estimation.

LMTT Positioning System Control using DR-FNN (DR-FNN을 이용한 LMTT Positioning System 제어)

  • Lee, Jin-Woo;Sohn, Dong-Sop;Min, Jung-Tak;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2206-2208
    • /
    • 2003
  • LMTT(Linear Motor-based Transfer Technology) is horizontal transfer system in the maritime container terminal for the port automation. The system is modeled PMLSM(Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car(mover). Because of large variant of movers weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's default etc., LMCS(Linear Motor Conveyance System) is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the soft-computing method of a multi-step prediction control for LMCS using DR-FNN(Dynamically Constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi-step prediction. Consequently, the system has an ability to adapt for external disturbance, cogging force, force ripple, and sudden changes of itself.

  • PDF

Recognition System of Car License Plate using Fuzzy Neural Networks (퍼지 신경망을 이용한 자동차 번호판 인식 시스템)

  • Kim Jae-Yong;Lee Dong-Min;Kim Young-Ju;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.352-357
    • /
    • 2006
  • 매년 도로와 주차공간의 확장보다 차량의 수가 빠르게 증가하여 그에 따라 불법 주차 관리의 어려움이 증가하고 있다. 이러한 문제점을 해결하기 위해 지능형 주차 관리 시스템이 필요하게 되었다. 본 논문에서는 획득된 차량 영상에서 수직 에지의 특징을 이용하여 번호판 영역과 개별 코드를 추출하고, 추출된 개별 코드를 퍼지 신경망 알고리즘을 제안하여 학습 및 인식한다. 본 논문에서는 차량 번호판 영역을 검출하기 위해 프리윗 마스크를 적용하여 수직 에지를 찾고, 차량 번호판의 정보를 이용하여 잡음을 제거한 후에 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역은 반복 이진화방법을 적용하여 이진화하고, 이진화된 차량 번호판 영역에 대해서 수직 분포도와 수평 분포도를 이용하여 번호판의 개별 코드를 추출한다 추출된 개별 코드는 제안된 퍼지 신경망 알고리즘을 적용하여 인식한다. 제안된 퍼지 신경망은 입력층과 중간층간의 학습 구조로는 FCM 알고리즘을 적용하고 중간층과 출력층간의 학습 구조는 Max_Min 신경망을 적용한다. 제안된 방법의 추출 및 인식 성능을 평가하기 위하여 실제 차량 영상 150장을 대상으로 실험한 결과, 기존의 차량 번호판 인식 방법보다 효율적이고 인식 성능이 개선된 것을 확인하였다.

  • PDF

State-Feedback Backstepping Controller for Uncertain Pure-Feedback Nonlinear Systems Using Switching Differentiator (불확실한 순궤환 비선형 계통에 대한 스위칭 미분기를 이용한 상태궤환 백스테핑 제어기)

  • Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.716-721
    • /
    • 2019
  • A novel switching differentiator-based backstepping controller for uncertain pure-feedback nonlinear systems is proposed. Using asymptotically convergent switching differentiator, time-derivatives of the virtual controls are directly estimated in every backstepping design steps. As a result, the control law has an extremely simple form and asymptotical stability of the tracking error is guaranteed regardless of parametric or unstructured uncertainties and unmatched disturbances in the considered system. It is required no universal approximators such as neural networks or fuzzy logic systems that are adaptively tuned online to cope with system uncertainties. Simulation results show the simplicity and performance of the proposed controller.

Real-time Fault Detection and Classification of Reactive Ion Etching Using Neural Networks (Neural Networks을 이용한 Reactive Ion Etching 공정의 실시간 오류 검출에 관한 연구)

  • Ryu Kyung-Han;Lee Song-Jae;Soh Dea-Wha;Hong Sang-Jeen
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1588-1593
    • /
    • 2005
  • In coagulant control of water treatment plants, rule extraction, one of datamining categories, was performed for coagulant control of a water treatment plant. Clustering methods were applied to extract control rules from data. These control rules can be used for fully automation of water treatment plants instead of operator's knowledge for plant control. To perform fuzzy clustering, there are some coefficients to be determined and these kinds of studies have been performed over decades such as clustering indices. In this study, statistical indices were taken to calculate the number of clusters. Simultaneously, seed points were found out based on hierarchical clustering. These statistical approaches give information about features of clusters, so it can reduce computing cost and increase accuracy of clustering. The proposed algorithm can play an important role in datamining and knowledge discovery.