• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.024 seconds

Integrated Neural Networks Model for Handwritten Pattern Recognition using Segment Recombination (연속 필기 패턴 인식을 위한 세그먼트 재조합 기반 통합 신경망 모델)

  • 장경익;류정우;박성진;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.399-401
    • /
    • 1998
  • 단일 문자 인식과 달리 연속 필기 패턴의 인식은 근본적인 필기 패턴의 형태적 특성을 충분히 고려할 필요가 있으며 다양한 형태의 패턴에 대한 특징이나 정보를 사용하여 종합적으로 판단 할 수 있는 모델의 유연성이 요구된다. 신경망의 학습 기능은 패턴의 왜곡과 잡음 등에 크게 영향을 받지 않으면서 인식에 필요한 특징의 추출이나 패턴 부류에 해당하는 노드의 반응을 스스로 학습시킬 수 있고, 다양한 형태의 정보를 쉽게 통합할 수 있는 유연한 구조를 제공한다. 퍼지 이론(Fuzzy theory)은 일정한 규칙이나 수학적 모델로 표현하기 어려운 패턴의 애매한 특징을 모델링할 수 있기 때문에 인식 대상의 총체적 특징을 추출해 신경망에 효과적으로 적용할 수 있다. 본 논문에서는 연속 필기 숫자 패턴을 인식을 위한 신경망과 퍼지 이론을 이용한 통합 신경망 모델을 제안한다.

  • PDF

The study on the Response Characteristics of Process Control using Fuzzy Neural Networks (퍼지 신경망을 적용한 공정제어에 응답특성에 관한 연구)

  • Kim, Jong-Dae;Lee, Kwang-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2152-2154
    • /
    • 2002
  • 신경망을 이용한 적응제어는 학습능력에 따라 외란작용에 스스로 대처하고, 정밀한 제어가 가능하지만 학습파라미터가 최적화되기 전에는 불안정한 제어응답을 보인다. 퍼지논리는 전문가의 경험을 논리화한 것으로 제어특성은 좋으나, 외란에 대한 적응력이 부족하여 계속적인 오프셋이 발생할 수 있다. 따라서, 퍼지와 신경망을 시스템의 동특성에 따라 혼용한 제어방식을 제시하고, 시뮬레이션으로 시간지연이 있는 CSTH의 온도와 비선형 공정인 pH 중화공정에 적용하여 단순신경망 제어어보다 개선된 제어응답 특성을 얻었다.

  • PDF

Optimial Identification of Fuzzy-Neural Networks Structure (퍼지-뉴럴 네트워크 구조의 최적 동정)

  • 윤기찬;박춘성;안태천;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.99-102
    • /
    • 1998
  • 본 논문에서는 복잡하고 비선형적인 시스템의 최적 모델링을 우해서 지능형 퍼지-뉴럴네트워크의 최적 모델 구축을 위한 방법을 제안한다. 기본 모델은 퍼지 추론 시스템의 언어적인 규칙생성의 장점과 뉴럴 네트워크의 학습기능을 결합한 FNNs 모델을 사용한다. FNNs 모델의 퍼지 추론부는 간략추론이 사용되고, 학습은 요류 역전파 알고리즘을 사용하여 다른 모델들에 비해 학습속도가 빠르고 수렴능력이 우수하다. 그러나 기본 모델은 주어진 시스템에 대하여 퍼지 공간을 균등하게 분할하여 퍼지 소속을 정의한다. 이것은 비선형 시스템의 모델링에 있어어서 성능을 저하시켜 최적의 모델을 얻기가 어렵다. 논문에서는 주어진 데이터의 특성을 부여한 공간을 설정하기 위하여 클러스터링 알고리즘을 사용한다. 클러스터링 알고리즘은 주어진 시스템에 대하여 상호 연관성이 있는 데이터들끼리 특성을 나누어 몇 개의 클래스를 이룬다. 클러스터링 알고리즘을 사용하여 초기 FNNs 모델의 퍼지 공간을 나누고 소속함수를 정의한다. 또한, 최적화 기법중의 하나로 자연선택과 자연계의 유전자 메카니즘에 바탕을 둔 탐색 알고리즘인 유전자 알고리즘을 사용하여 주\ulcorner 진 모델에 대하여 최적화를 수행한다. 또한 본 연구에서는 학습 및 테스트 데이터의 성능 결과의 상호 균형을 얻기 위한 하중값을 가긴 성능지수가 제시된다.

  • PDF

An Intelligent Visual Servoing Method using Vanishing Point Features

  • Lee, Joon-Soo;Suh, Il-Hong
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.177-182
    • /
    • 1997
  • A visual servoing method is proposed for a robot with a camera in hand. Specifically, vanishing point features are suggested by employing a viewing model of perspective projection to calculate the relative rolling, pitching and yawing angles between the object and the camera. To compensate dynamic characteristics of the robot, desired feature trajectories for the learning of visually guided line-of-sight robot motion are obtained by measuring features by the camera in hand not in the entire workspace, but on a single linear path along which the robot moves under the control of a commercially provided function of linear motion. And then, control actions of the camera are approximately found by fuzzy-neural networks to follow such desired feature trajectories. To show the validity of proposed algorithm, some experimental results are illustrated, where a four axis SCARA robot with a B/W CCD camera is used.

  • PDF

Backstepping Control-Based Precise Positioning Control Using Robust Friction State Observer and RFNN (강인한 마찰상태관측기와 RFNN을 이용한 백스테핑 제어기반 정밀 위치제어)

  • Yeo, Dae-Yeon;Han, Seong-Ik;Lee, Kwon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.394-401
    • /
    • 2010
  • In this article, we investigate a robust friction compensation scheme for the purpose of accomplishing precision positioning performance a servo mechanical system with nonlinear dynamic friction. To estimate the friction state and tackle robustness problem for uncertainty, a RFNN and reconstructed error compensator as well as a robust friction state observer are developed. The asymptotic stability of the series of friction compensation methodologies are verified from the Lyapunov's stability theory. Some simulations and experiments on a servo mechanical system were carried out to evaluate the effectiveness of the proposed control scheme.

Machine Learning Application to the Korean Freshwater Ecosystems

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Chon, Tae-Soo;Joo, Gea-Jae
    • The Korean Journal of Ecology
    • /
    • v.28 no.6
    • /
    • pp.405-415
    • /
    • 2005
  • This paper considers the advantage of Machine Learning (ML) implemented to freshwater ecosystem research. Currently, many studies have been carried out to find the patterns of environmental impact on dynamics of communities in aquatic ecosystems. Ecological models popularly adapted by many researchers have been a means of information processing in dealing with dynamics in various ecosystems. The up-to-date trend in ecological modelling partially turns to the application of ML to explain specific ecological events in complex ecosystems and to overcome the necessity of complicated data manipulation. This paper briefly introduces ML techniques applied to freshwater ecosystems in Korea. The manuscript provides promising information for the ecologists who utilize ML for elucidating complex ecological patterns and undertaking modelling of spatial and temporal dynamics of communities.

A Study on the Forcasting and Fuzzy Control of Maximum demand Power Using SOFM Neural Networks (SOFM신경망을 이용한 최대수요전력 예측과 퍼지제어에 관한 연구)

  • 조성원;안준식;석진욱
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.427-432
    • /
    • 1998
  • 최근 산업발전에 따라 야기되는 문제점 중 전력수요의 증가에 의한 피해가 증대되고 있다. 여름철 하계부하등에 의한 과부하는 가정이나 대형건물의 정전을 발생시키거나 공장의 기계를 파손시키기도 하기 때문에 이를 미연에 방지할 수 있는 부하예측기법이 점차로 강조되고 있는 현실이다. 이에 본 논문에서는 초(sec)단위의 순시부하예측/제어를 위한 새로운 방법과 퍼지제어기를 제안한다. 제안한 순시부하예측/제어는 크게 과거의 데이터를 가지고 일정시간 후의 값을 예측하는 예측부와 이 결과의 신뢰도를 높여주기 위한 퍼지제어기로나눌 수 있다. 예측부는 SOFM (Self-Organizing Feature Map) 신경망을 이용하며, 예측된 출력값을 퍼지제어기의 입력으로 사용한다.

  • PDF

Automatic Generations and Representations of T-S Fuzzy Rule based on Neural Networks (신경망에 기초한 T-S 퍼지 규칙의 자동생성과 표현)

  • 황문선;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.310-316
    • /
    • 1998
  • 본 논문에서는 기존의 퍼지 제어규칙에비해 좋은 성능을 갖는 T-S(Takagi-Sugeno)퍼지 모델을 자기조직화 지도와 역전파 신경망을 이용하여 표현하고 제어기 구현을 위한 규칙의 자동 생성 방법을 제안한다. 제안된 방법은 신경망에 기초하여 T-S 퍼지 제어 규칙을 포현하므로써 학습 기능을 이용하여 지식 획득을 용이하게 하고, 입력 변수간의 퍼지 관계에 기반 하여 추론이 이루어지므로 각 퍼지 변수에 대한 소속 함수의 정의 과정이 불필요하게 된다. 또한 제어기로 구현되었을 때 규칙의 수나 퍼지화 및 비퍼지화 등이 구성된 추론망을 통하여 자동으로 수행될 수 있다. 때문에 퍼지 시스템의 구현이 쉽게 이루어 질 수 있게 한다. 제안된 방법을 자동차 궤도 안정화 모의 실험에 적용해 봄으로써 추론망이 규칙을 생성하여 타당한 추론을 하게 됨을 확인한다.

  • PDF

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

Safety-Economic Decision Making Model of Tropical Cyclone Avoidance Routing on Oceans

  • Liu, Da-Gang;Wang, De-Qiang;Wu, Zhao-Lin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.144-153
    • /
    • 2006
  • In order to take TC forecasts from different observatories into consideration, and make quantitative assessment and analysis for avoiding TC routes from the view of safety and cost, a new safe-economic decision making method of TC avoidance routing on ocean was put forward. This model is based on combining forecast of TC trace based on neural networks, technical method to determine the future TC wind and wave fields, technical method of fuzzy information optimization, risk analysis theory, and meteorological-economic decision making theory. It has applied to the simulation of MV Tianlihai's shipping on ocean. The result shows that the model can select the optimum plan from 7 plans, the selected plan is in accordance with the one selected by experienced captains.

  • PDF