• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.029 seconds

Formulation of the Neural Network for Implicit Constitutive Model (I) : Application to Implicit Vioscoplastic Model

  • Lee, Joon-Seong;Lee, Ho-Jeong;Furukawa, Tomonari
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • Up to now, a number of models have been proposed and discussed to describe a wide range of inelastic behaviors of materials. The fatal problem of using such models is however the existence of model errors, and the problem remains inevitably as far as a material model is written explicitly. In this paper, the authors define the implicit constitutive model and propose an implicit viscoplastic constitutive model using neural networks. In their modeling, inelastic material behaviors are generalized in a state space representation and the state space form is constructed by a neural network using input-output data sets. A technique to extract the input-output data from experimental data is also described. The proposed model was first generated from pseudo-experimental data created by one of the widely used constitutive models and was found to replace the model well. Then, having been tested with the actual experimental data, the proposed model resulted in a negligible amount of model errors indicating its superiority to all the existing explicit models in accuracy.

Intelligent Motion Planner for Redundant Manipulators Controlled by Neuro-Biological Signals

  • Kim, Chang-Hyun;Kim, Min-Soeng;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.845-848
    • /
    • 2003
  • There are many researches on using human neuro-biological signals for various problems such as controlling a mechanical object and/or interfacing human with the computer. It is one of very interesting topics that human can use various instruments without learning specific knowledge if the instruments can be controlled as human intends. In this paper, we proposed an intelligent motion planner for a redundant manipulator, which is controlled by humans neuro-biological signals, especially, EOG (Electrooculogram). We found the optimal motion planner for the redundant manipulator that can move to the desired point. We used neural networks to find the inverse kinematics solution of the manipulator. We also showed the performance of the proposed motion planner with several simulations.

  • PDF

Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization (다중목적 입자군집 최적화 알고리즘을 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1966-1967
    • /
    • 2011
  • 본 연구에서는 방사형 기저 함수를 이용한 다항식 신경회로망(Polynomial Neural Network) 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층의 다항식 노드 대신에 다중 출력 형태의 방사형 기저 함수를 사용하여 각 노드가 방사형 기저 함수 신경회로망(RBFNN)을 형성한다. RBFNN의 은닉층에는 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. 제안된 분류기는 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Multiobjective Particle Swarm Optimization(MoPSO)을 사용하여 모델의 성능뿐만 아니라 모델의 복잡성 및 해석력을 고려하였다. 패턴 분류기로써의 제안된 모델을 평가하기 위해 Iris 데이터를 이용하였다.

  • PDF

On learning of HMM-Net classifiers (HMM-Net 분류기의 학습)

  • 김상운;오수환
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.61-67
    • /
    • 1997
  • The HMM-Net is an architecture for a neural network that implements a hidden markov model(HMM). The architecture is developed for the purpose of combining the classification power of neural networks with the time-domain modeling capability of HMMs. Criteria which are used for learning HMM_Net classifiers are maximum likelihood(ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numbers from /young/to/koo/ show that in the binary inputs the performance of MMSE is better than the others, while in the fuzzy inputs the performance of MMI is better than the others.

  • PDF

Evaluating Mental State of Final Year Students Based on POMS Questionnaire and HRV Signal

  • Handri, Santoso;Nomura, Shusaku;Nakamura, Kazuo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.37-42
    • /
    • 2010
  • Final year students are normally encountering high pressing in their study. In view of this fact, this research focuses on determining mental states condition of college student in final year based on the psycho-physiological information. The experiments were conducted in two times, i.e., prior- and post- graduation seminar examination. The early results indicated that the student profile of mood states (POMS) in prior final graduation seminar showed higher scores than students in post final graduation seminar. Thus, in this research, relation between biosignal representing by heart rate variability (HRV) and questionnaire responses were evaluated by hidden Markov model (HMM) and neural networks (NN).

Performance Improvement of Fuzzy C-Means Clustering Algorithm by Optimized Early Stopping for Inhomogeneous Datasets

  • Chae-Rim Han;Sun-Jin Lee;Il-Gu Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.198-207
    • /
    • 2023
  • Responding to changes in artificial intelligence models and the data environment is crucial for increasing data-learning accuracy and inference stability of industrial applications. A learning model that is overfitted to specific training data leads to poor learning performance and a deterioration in flexibility. Therefore, an early stopping technique is used to stop learning at an appropriate time. However, this technique does not consider the homogeneity and independence of the data collected by heterogeneous nodes in a differential network environment, thus resulting in low learning accuracy and degradation of system performance. In this study, the generalization performance of neural networks is maximized, whereas the effect of the homogeneity of datasets is minimized by achieving an accuracy of 99.7%. This corresponds to a decrease in delay time by a factor of 2.33 and improvement in performance by a factor of 2.5 compared with the conventional method.

Application of Soft Computing Based Response Surface Techniques in Sizing of A-Pillar Trim with Rib Structures (승용차 A-Pillar Trim의 치수설계를 위한 소프트컴퓨팅기반 반응표면기법의 응용)

  • Kim, Seung-Jin;Kim, Hyeong-Gon;Lee, Jong-Su;Gang, Sin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.537-547
    • /
    • 2001
  • The paper proposes the fuzzy logic global approximate optimization strategies in optimal sizing of automotive A-pillar trim with rib structures for occupant head protection. Two different strategies referred to as evolutionary fuzzy modeling (EFM) and neuro-fuzzy modeling (NFM) are implemented in the context of global approximate optimization. EFM and NFM are based on soft computing paradigms utilizing fuzzy systems, neural networks and evolutionary computing techniques. Such approximation methods may have their promising characteristics in a case where the inherent nonlinearity in analysis model should be accommodated over the entire design space and the training data is not sufficiently provided. The objective of structural design is to determine the dimensions of rib in A-pillar, minimizing the equivalent head injury criterion HIC(d). The paper describes the head-form modeling and head impact simulation using LS-DYNA3D, and the approximation procedures including fuzzy rule generation, membership function selection and inference process for EFM and NFM, and subsequently presents their generalization capabilities in terms of number of fuzzy rules and training data.

Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization (PSO 알고리즘을 이용한 퍼지 Extreme Learning Machine 최적화)

  • Roh, Seok-Beom;Wang, Jihong;Kim, Yong-Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • In this paper, optimization technique such as particle swarm optimization was used to optimize the parameters of fuzzy Extreme Learning Machine. While the learning speed of conventional neural networks is very slow, that of Extreme Learning Machine is very fast. Fuzzy Extreme Learning Machine is composed of the Extreme Learning Machine with very fast learning speed and fuzzy logic which can represent the linguistic information of the field experts. The general sigmoid function is used for the activation function of Extreme Learning Machine. However, the activation function of Fuzzy Extreme Learning Machine is the membership function which is defined in the procedure of fuzzy C-Means clustering algorithm. We optimize the parameters of the membership functions by using optimization technique such as Particle Swarm Optimization. In order to validate the classification capability of the proposed classifier, we make several experiments with the various machine learning datas.

Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV) (심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.239-247
    • /
    • 2019
  • An accurate prediction of emotion is a very important issue for the sake of patient-centered medical device development and emotion-related psychology fields. Although there have been many studies on emotion prediction, no studies have applied the heart rate variability and neuro-fuzzy approach to emotion prediction. We propose ANFEP(Adaptive Neuro Fuzzy System for Emotion Prediction) HRV. The ANFEP bases its core functions on an ANFIS(Adaptive Neuro-Fuzzy Inference System) which integrates neural networks with fuzzy systems as a vehicle for training predictive models. To prove the proposed model, 50 participants were invited to join the experiment and Heart rate variability was obtained and used to input the ANFEP model. The ANFEP model with STDRR and RMSSD as inputs and two membership functions per input variable showed the best results. The result out of applying the ANFEP to the HRV metrics proved to be significantly robust when compared with benchmarking methods like linear regression, support vector regression, neural network, and random forest. The results show that reliable prediction of emotion is possible with less input and it is necessary to develop a more accurate and reliable emotion recognition system.

Modeling of Photovoltaic Power Systems using Clustering Algorithm and Modular Networks (군집화 알고리즘 및 모듈라 네트워크를 이용한 태양광 발전 시스템 모델링)

  • Lee, Chang-Sung;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.108-113
    • /
    • 2016
  • The real-world problems usually show nonlinear and multi-variate characteristics, so it is difficult to establish concrete mathematical models for them. Thus, it is common to practice data-driven modeling techniques in these cases. Among them, most widely adopted techniques are regression model and intelligent model such as neural networks. Regression model has drawback showing lower performance when much non-linearity exists between input and output data. Intelligent model has been shown its superiority to the linear model due to ability capable of effectively estimate desired output in cases of both linear and nonlinear problem. This paper proposes modeling method of daily photovoltaic power systems using ELM(Extreme Learning Machine) based modular networks. The proposed method uses sub-model by fuzzy clustering rather than using a single model. Each sub-model is implemented by ELM. To show the effectiveness of the proposed method, we performed various experiments by dataset acquired during 2014 in real-plant.