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Abstract

Responding to changes in artificial intelligence models and the data environment is crucial for increasing data-learning accuracy

and inference stability of industrial applications. A learning model that is overfitted to specific training data leads to poor

learning performance and a deterioration in flexibility. Therefore, an early stopping technique is used to stop learning at an

appropriate time. However, this technique does not consider the homogeneity and independence of the data collected by

heterogeneous nodes in a differential network environment, thus resulting in low learning accuracy and degradation of system

performance. In this study, the generalization performance of neural networks is maximized, whereas the effect of the

homogeneity of datasets is minimized by achieving an accuracy of 99.7%. This corresponds to a decrease in delay time by a

factor of 2.33 and improvement in performance by a factor of 2.5 compared with the conventional method.

Index Terms: Deep reinforcement learning, Early stopping, Neural network, Overfitting

I. INTRODUCTION

Neural networks can restore several damaged neurons or

distorted data owing to their fault tolerance and parallelism

model relationships between complex data, thus allowing the

prompt learning of nonlinear relationships between large-

scale data. Owing to these advantages, neural networks have

been used in various fields, such as text, voice, and image

recognition, in addition to natural language processing.

During the training process of an artificial intelligence

(AI) model, overfitting occurs when the computational vol-

ume increases or the dataset is excessively optimized [1].

When overfitting occurs, the model achieves high accuracy

on the learning data; however, the accuracy on the new data

is lower owing to the low amount of learning, which signifi-

cantly influences the neural network and network perfor-

mance. As a solution to this problem, early stopping is a

method of storing models in optimal epochs by terminating

learning when the validation loss does not decrease further

after a particular epoch [2]. The data should be independent

and homogeneous for the valid implementation of early stop-

ping. However, in a heterogeneous distributed network envi-

ronment where learning data are scarcer than the data

required for local processing, the data collected from a node

are not independently and identically distributed (IID); there-

fore, the accuracy is low [3].

Numerous studies have been conducted to optimize the

generalization capability of neural networks. The index data

division (IDD) algorithm [4,5], a representative method, is a

method of division according to the index distance rule,
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wherein data are distributed. This method demonstrates high

performance when the rules by which the data are split are

known; however, in an environment where the quality of the

learning data is non-homogeneous, the learning accuracy sig-

nificantly degrades. The random data division (RDD) algo-

rithm [6,7] is a prompt method for randomly segmenting

data; however, it can degrade network performance. The

block data division (BDD) algorithm [8,9] demonstrates

superior performance to alternative methods because it ran-

domly and evenly arranges data. However, it presents a sig-

nificant difference in the learning precision depending on the

data arrangement rules.

Recent studies have been conducted to optimize the gener-

alized capabilities of neural networks using clustering tech-

niques, including fuzzy c-means clustering (FMC) [11,12],

center-based clustering [14], density-based clustering [15],

and hierarchical clustering [16,17]. These methods improve

the clustering precision of neural networks through silhou-

ette analysis. However, these studies did not address the

class imbalance problem because the accuracy varies depend-

ing on the homogeneity of the dataset. In addition, the origi-

nal dataset can be freely modified, given that the data are

balanced using an oversampling scheme.

The early stopping hyperparameters should be optimized

by multiplying the weights with respect to the data-learning

ratio to improve the accuracy of conventional FMC tech-

niques. Therefore, this study proposes an early stopping

algorithm for the application of an optimal patience hyperpa-

rameter. The main contributions of this study are as follows.

• The data homogeneity and learning accuracy were

improved by applying an early stopping method based

on an optimal patience hyperparameter.

• By applying FMC algorithms to classify the data, we

mitigated the problems of network degradation and pre-

cision damage associated with the unrefined datasets of

conventional methods.

• The proposed method achieved an accuracy of 99.7%,

corresponding to a decrease in delay time by a factor of

2.33 and improvement in performance by a factor of 2.5

compared with the conventional method.

The remainder of this paper is organized as follows. Sec-

tion II presents a comparison and analysis of related studies.

Section III proposes a novel data measurement method that

improves the conventional early stopping method. Section

IV presents an evaluation of the latency, loss, and accuracy

of the proposed method in comparison with the FMC and

existing early stopping methods (IDD and RDD). Finally,

Section V concludes the study.

II. RELATED WORK

This section presents an analysis of previous research and

the limitations of the data segmentation and clustering meth-

ods used for neural network learning. The latency and accu-

racy of each algorithm were measured in the same environment

at 3,000 iterations and 30 epochs, respectively.

A. Data Segmentation

During the early stopping algorithm training process, the

data segmentation scheme determines the precision of the

neural network. In this case, the data division refers to the

operation of dividing data into training, validation, and test

sets. Table 1 presents an analysis of the conventional early

stopping algorithm data division method.

The IDD algorithm improves segmentation performance

by segmenting the data according to a manually specified

index. Moreover, IDD demonstrates high performance when

the data are segmented according to a particular segmenta-

tion rule; however, in most cases, quantifying the objective

performance is challenging because the rules by which the

datasets are sorted are not known. In addition, the speed is

low because the user must manually specify an index.

The RDD algorithm divides data according to an automati-

cally generated percentage. Although it is faster than IDD

and BDD, its performance is high when the dataset is large

because overfitting is highly likely to occur with less than

10,000 datasets.

The BDD algorithm divides data by allocating memory in

blocks to an RDD algorithm, which can reduce memory

usage compared with other algorithms. However, because

only randomly specified training datasets are used for train-

ing, data arranged according to specific rules have a low

accuracy of 83.41% [8,9].

Table 1. Previous research on the data segmentation method of the early

stopping algorithm

Previous 

research
Feature Limitation Latency Accuracy

IDD 

[4,5]

Splits data based on 

manually specified 

indices

• 262.74 s (low) of 

processing time

• Difficult to quan-

tify objective per-

formance

1.7 s 94.6%

RDD 

[6,7]

• Splits data based on 

automatically gener-

ated percentages

• High performance for 

large datasets

Overfitting occurs 

with less than 

10,000 datasets

2.3 s 87.08%

BDD 

[8,9]

• Random data divi-

sion algorithm and 

memory allocation in 

blocks

• Reduced memory 

usage

83.41% (low) accu-

racy for data 

arranged by specific 

rules

2.64 s

Depends 

on the sta-

tus of the 

data array
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As a result of experiments, the latency of IDD, RDD, and

BDD were derived as 1.7, 2.3, and 2.64 s, respectively. The

accuracies of IDD and RDD were 94.6 and 87.08%, respec-

tively; however, for BDD, different values were derived

depending on the state of arrangement of the data. Therefore,

IDD and RDD were selected as control groups.

B. Clustering

Clustering is a type of unsupervised learning method

based on the grouping of data with similar characteristics

and is classified as soft clustering [10], hard clustering [13],

and hierarchical clustering [15,16] (i.e., the clustering of data

based on the probability of belonging to a cluster, depending

on the distance between clusters). Table 2 presents an analy-

sis of the related clustering studies.

The FMC proposed by J.C. Dunn is a soft clustering

method, which is the most high-level clustering method;

however, its precision varies with the homogeneity of the

dataset because it does not solve the class imbalance prob-

lem arising during training. Furthermore, variations may

occur in the original dataset during the training process

because the data are balanced using an oversampling method.

Hard clustering is classified as center-based clustering

[14], which allocates data on a central basis, and density-

based clustering [15], which allocates data on a distance

basis. Center-based clustering clusters the points closest to

any cluster center. As the number of features increases, the

precision of the method decreases. Furthermore, given that

center-based clustering uses an iterative algorithm, with an

increase in the number of iterations, the latency increases, in

addition to the sensitivity of the outliers. Density-based clus-

tering forms clusters by moving a cluster center to a dense

data location. Herein, clustering can be achieved without set-

ting the number of clusters; however, the performance is sig-

nificantly dependent on the cluster radius variable, and the

latency increases.

Hierarchical clustering assumes each data point to be a

cluster, calculates the distance between clusters, and gener-

ates and clusters similar data pairs with short distances into

one cluster. Hierarchical clustering is limited because the

delay time increases with the number of features.

To overcome the limitations of the algorithms presented

above, this study proposes a novel early stopping algorithm

based on the FMC algorithm with optimal clustering perfor-

mance.

III. SYSTEM MODEL AND METHODS

This section describes the framework of the enhanced

FMC (EFMC), which is an early stopping algorithm based

on the FMC algorithm. Fig. 1 shows a structural diagram of

the proposed algorithm. As shown in Fig. 1, the EFMC con-

ducts training using the FMC for algorithms that perform

data division using the optimal patience hyperparameter val-

ues.

A. Patience Hyperparameter

The patience hyperparameter stops training when the

extent of the increase in performance does not match the

increase in the number of epochs in the early stopping mech-

anism and exhibits a significant influence on neural network

training [18].

Average precision (AP) is expressed in (1) [19], where r

denotes recall, i denotes the number of points to be mea-

sured using 11-point interpolation, and maxp(r) denotes the

maximum precision measured at the recall value.

Table 2. Related work on clustering

Previous research Feature Limitation Latency Accuracy

Soft clustering (FMC)

[10-12]

• Represents the degree of membership as a 

probability

• Calculates weights by maximizing simi-

larities within clusters and minimizing 

similarities between clusters

• Accuracy varies with respect to the homo-

geneity of the dataset

• Variations in the original dataset

2.04 s
Depends on data 

homogeneity

Hard 

clustering

[13]

Center-based 

clustering 

[14]

Clusters points closest to 

the cluster center

• 88.7% (low) accuracy when the number of 

features increases

• Increase in latency and sensitivity when 

the number of iterations increases

1.71 s 96.76%

Density-based 

clustering 

[15]

Clusters by moving the center of 

a cluster to a dense data location

• Increase in latency when the number of 

features increases

• Performance depends on the cluster radius 

variable

1.56 s 90.53%

Hierarchical clustering 

[16,17]

Clusters by calculating the distance 

between clusters and creating similar data 

pairs with short distances into one cluster

Increase in latency when the number of fea-

tures increases
1.65 s 97.2%
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(1)

The mean average decision (mAP) was derived by calcu-

lating the area below the AP graph in (1) and the average

value for each class. As the initialization was performed ran-

domly during training, each experiment was repeated five

times to ensure accuracy. The optimal parameters were

determined by comparing the mAP values when the patience

hyperparameters were 2, 3, 4, and 5. Fig. 2 presents the test

results of the average mAP values for the validation and test

sets with respect to the patience hyperparameter values. The

mAPs for the validation set with respect to patience hyperpa-

rameters 2-5 were 86.74, 89.07, 88.45, and 0, whereas those

for the training set were 86.29, 88.32, 87.26, and 0, respec-

tively. In an environment where the optimal hyperparameter

varies depending on the dataset, the EMFC framework sets

patience hyperparameter 3, which exhibits the optimal mAP

value on the dataset used in the experiment, as the optimal

value through the above process.

B. Fuzzy C-Means Clustering

Conventional techniques are limited in that the learning

performance is degraded when a non-homogeneous dataset is

input because early stopping algorithms are not refined. To

overcome this limitation, the data were sorted using FMC

[20,21]. 7,860-character data and 6,000 32 × 32 image data

were collected from the Modified National Institute of Stan-

dards and Technology (MNIST) and Canadian Institute for

Advanced Research (CIFAR-10) datasets, respectively. Both

datasets were divided into training, validation, and test sets

in a ratio of 60:20:20 [22]. Table 3 lists the number of data

samples used in the experiments.

Data were sorted with respect to the distance from the

cluster center, and the data were distributed with respect to

the dataset division ratio. The proposed algorithm can improve

precision because it uses an optimal algorithm to divide the

data from the optimal patience hyperparameter value, and

the homogeneity of the dataset has a slight influence because

it is independent of the data distribution rule.

The homogeneity of the dataset was calculated as the aver-

age distance between the pointer and the center of the cluster

used by the FMC. With an increase in the average distance,

the homogeneity increases, and when N is set as the total

number of pointers and D as the distance function between

clusters, homogeneity H is calculated using (2) [23], where

pi denotes the i th cluster pointer, and C(Pi) denotes the center

of pi.

(2)

The operation process of the FMC-based early stopping

algorithm is shown in Fig. 3 [24,25], where j is a dataset

classified as C(p), k is a dataset classified as cluster K, m is

the average distance between pi and pi+1, w is a randomly

assigned weight, d is the Euclidean distance from p to C, and

C' is the center of cluster K.

The calculation formula of mi for classifying p allocated

by C(p) is given in (3) [26], where d(pi) denotes the distance

between the ith pointers and d(pi+1) denotes the distance

between the (i + 1)th pointers. Among p classified as C(p), p

satisfying d(pi j) > 2d is reclassified as cluster K, and the

minimum value of C' (pik) in the process is determined using

(4); here, d(pik) and d(pi j) denote the Euclidean distances

from p to cluster K and from p to C(p), respectively. The
Fig. 2. mAP on the validation and test sets with respect to the patience

hyperparameter.

Fig. 1. Structure of EFMC.
Table 3. Experimental dataset

Dataset category MNIST dataset CIFAR-10 dataset

Training set 4,720 3,600

Validation set 1,570 1,200

Test set 1,570 1,200

Total 7,860 6,000
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Lagrange multiplier method is used to derive the minimum

value of C' (pik)[27].

(3)

(4)

As shown in Fig. 3, EFMC operates in four stages. When

the dataset is input, first, cluster initialization is performed,

and p is assigned as C(p) when d(pi j) > m(pi j). Subsequently,

p allocated by C(p) is grouped into cluster K when d(pi j) >

2d. Based on p and C, the values of Dik and Dij are obtained,

and w is randomly assigned to calculate C' (pik). In this case,

if C(p) > C' (p), the value changes to C' (p), and the process

is repeated until the C' (p) value is minimized.

IV. PERFORMANCE EVALUATION AND ANALYSIS

This section describes the evaluation environment for the

proposed early stopping method and presents a comparison

and analysis method for the speed and accuracy of the train-

ing and validation sets with respect to the IDD, RDD, and

FMC.

A. Experimental Setup

The collected image data were preprocessed through one-

hot encoding and then augmented using the ImageDataGen-

erator class in the TensorFlow Keras library. Augmentation

means increasing the amount of data by adding noise while

maintaining the nature of the original data.

The collected data were extracted and combined with pixel

x of the same size from a randomly selected C(pi). Next,

non-homogeneous data with a p-value of less than 0.05 were

extracted using the Kolmogorov-Smirnov (KS) test. P-value

is an indicator of the probability that the statistic obtained

when assuming the null hypothesis is true [28], and the KS

test evaluates the null hypothesis that the cumulative proba-

bility distribution (CDF) of the data matches the CDF of

vector x. The KS test does not require a separate assumption

of the shape or number of samples (nonparametric static test)

and is suitable for the comparison of large samples. The

experiment was conducted using the kstest function in MAT-

LAB.

Fig. 4 shows a KS test cumulative probability distribution

diagram for 7,860 nonuniform data samples extracted from

64,580 randomly selected MNIST data samples. In the graph,

the x-axis represents the vector x, whereas the y-axis rep-

resents the cumulative probability. Evidently, the hypothesis

(h) and test statistic (k) were 1 and 0.2346, respectively. The

KS test algorithm compared the test statistic value k with the

p-value to determine the validity of the null hypothesis; if k

was smaller than the p-value, the null hypothesis was

rejected. Herein, the KS test rejected the null hypothesis at

the 5% significance level and adopted the alternative hypoth-

esis; thus, the extracted 7,860 data samples were non-homo-

geneous.

TensorFlow Keras library was used to create convolutional

neural networks (CNNs) and the patience hyperparameter,

which was updated whenever learning was conducted using

Fig. 3. Flowchart of EFMC.

Fig. 4. KS test cumulative probability distribution plot for inhomogeneous
datasets.
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the perception class. The model was optimized using cross-

entropy and the Adam optimizer and was set to early stop-

ping if the model remained unchanged more than three times.

Data clusters utilized the scikit-learn fuzzy-c-means pack-

age, and the accuracy was evaluated with respect to a logis-

tic-regression class. Finally, it was visualized as a pyplot

using the Matplotlib library from the Pandas package.

The hardware specifications for the experiment are pre-

sented in Table 4.

B. Evaluation Analysis

1) Latency

Fig. 5 presents a comparison graph of the delay times of

the EFMC, IDD, RDD, and FMC with respect to the number

of iterations and homogeneity of the MNIST character data-

set. In the graph, the x-axis represents the homogeneity of

the dataset, whereas the y-axis represents the iteration. Homo-

geneity is an index measured by the ratio of nonhomoge-

neous noise distributed in a dataset. The noise was measured

by multiplying the maximum point of the loss value of the

loss function by the epsilon parameter. The epsilon parame-

ter is an index that denotes the degree of damage to the

image data, and in the experiment, it was set in the range of

0-0.5. The number of epochs was set to 30, and the iterations

and epochs were set as factors with the same meaning. The

time required for one epoch was measured as 6 s.

Latency and iterations were inversely proportional, and the

latencies of the four models were the same when the homo-

geneity was 0%. However, when the homogeneity was 10%

or higher, the latency of the EFMC was optimal. The latency

of EFMC in the homogeneity range of 0-100% and iteration

range of 0-8,000 improved by an average factor of 2.05 with

a homogeneity of 50% and a factor of up to 2.33 over 3,000

iterations.

Table 5 compares the latencies of the EFMC, IDD, RDD,

and FMC with respect to the homogeneity of CIFAR-10. The

number of iterations was set to 4,000, and the other condi-

tions were the same as those shown in Fig. 4.

As with the results on the MNIST character dataset, the

homogeneity and latency were inversely proportional, and

the latencies of the four models were the same when the

homogeneity was 0%; however, EFMC had the best latency

when the homogeneity was more than 10%. In the homoge-

neity range of 0-100%, the latency of EFMC improved by an

average factor of 1.87 and factor of up to 2.12 with a homo-

geneity of 60%.

2) Accuracy

Fig. 6 presents a comparison graph of the loss values and

accuracies of EFMC, IDD, RDD, and FMC on the MNIST

character dataset. Fig. 6(a) presents the measurement results

for the loss value with respect to the number of epochs, and

Fig. 6(b) presents the evaluation results in terms of the accu-

racy with respect to the number of epochs. In this case, a

complementary relationship between the loss value and the

accuracy was established. As the number of epochs increased,

the loss value decreased and accuracy improved.

With reference to the experimental results, the proposed

EFMC loss value was lower than the others, and it was

improved by an average factor of 2.2 compared with the

other three models. At epoch 30, the loss improved by a fac-

tor of up to 2.71, essentially presenting the smallest devia-
Fig. 5. Latency of EFMC, IDD, RDD, and FMC with respect to the number of
iterations and homogeneity.

Table 4. Hardware specifications

Hardware Specification

CPU Intel(R) CoreTM i7-1065G7 CPU @ 1.30 GHz

GPU Intel(R) Iris(R) Plus Graphics

GPU Memory 7.9 GB

RAM 16 GB

SSD 477 GB

Table 5. Latency of EFMC, IDD, RDD, and FMC with respect to homogeneity

Latency (s)

Homogeneity (%)

EFMC IDD RDD FMC

0 8 8 8 8

10 4.7 6.13 6.88 6.35

20 4.27 5.97 6.3 6.21

30 3.92 5.4 6.02 5.98

40 2.43 3.06 3.47 3.19

50 1.71 2.7 2.98 2.84

60 1.29 2.13 2.74 2.3

70 1.32 2.17 2.8 2.32

80 1.3 2.21 2.83 2.3

90 1.33 2.22 2.88 2.35

100 1.33 2.22 2.87 2.34
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tion among the four models. In addition, EFMC demonstrated

the highest accuracy and was improved by an average factor

of 1.16. The accuracy improved by a factor of up to 1.24 at

epoch 0, essentially presenting the smallest deviation among

the four models.

Table 6 presents a comparison of the epoch accuracies of

the CIFAR-10 image dataset. Similar to the results for the

MNIST character dataset, the epoch and accuracy exhibited

a proportional relationship, and EFMC achieved the best

accuracy. At 0-30 epochs, EFMC improved by an average

factor of 1.1 and achieved the highest accuracy of up to

98.3% at epoch 30.

Fig. 7 presents a distribution diagram comparing the accu-

racies of EFMC, IDD, RDD, and FMC with respect to the

homogeneity of the dataset. Fig. 7(a) presents the result for

epoch 30, whereas Fig. 7(b) presents the result for epoch

150. In this experiment, the accuracy was measured using

the coefficient of determination (R2) [29], which indicates

the accuracy of an independent variable representing the

suitability of a dependent variable in a regression model.

According to (5), R2 is calculated by dividing the sum of the

Fig. 6. Performance of EFMC, IDD, RDD, and FMC with respect to the
epoch: (a) Loss and (b) Accuracy.

Fig. 7. Accuracy of EFMC, IDD, RDD, and FMC with respect to
homogeneity: (a) Epoch 30 and (b) Epoch 150.

Table 6. Accuracy of EFMC, IDD, RDD, and FMC in terms of the number of
epochs

 Accuracy (%)

Epoch
EFMC IDD RDD FMC

0 91.72 87 78.86 84.98

5 96.48 89.09 80.77 86.6

10 97.86 90.7 81.4 87.55

15 97.9 92.28 82 88.71

20 98.04 92.66 85.95 91.24

25 98.21 93.67 86.08 93.3

30 98.3 93.8 86.54 93.63
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squared deviations of each data point by the sum of the

squared deviations. As the value converges to 1, the error

decreases, and the accuracy increases. In (5), pi denotes the

predicted value, ai denotes the actual value, and  denotes

the average value.

(5)

The R2 values of the four models were similar when the

homogeneity was 0%, as can be observed in both graphs;

however, the R2 value of EFMC was optimal when the

homogeneity was 10% or greater. In the homogeneity range

of 0-100% at epoch 30, the accuracy of EFMC improved by

an average factor of 1.52 and by a maximum factor of 2.5

when the homogeneity was 40%. The accuracy of EFMC at

epoch 150 improved by an average factor of 1.14 compared

with the other three models, and by a maximum factor of

1.47 when the homogeneity was 50%. The performance of

the proposed EFMC exhibited an increase in the average

accuracy by factors of 1.33 and 1.7, even with a smaller

number of epochs, and the increase in accuracy was larger

than that of other comparative models.

The EFMC algorithm applied using the proposed early

stopping method exhibited optimal average clustering perfor-

mance because it improved the delay time, loss value, and

accuracy by factors of 2.33, 2.71, and 2.5, respectively, com-

pared with conventional models.

V. CONCLUSIONS

This study proposed an early stopping algorithm based on

the FMC algorithm. Herein, the performance of the proposed

algorithm was analyzed. Conventional techniques such as

IDD, BDD, and RDD exhibit low accuracy because they are

trained with rough datasets, and the network performance is

degraded. FMC, center-based clustering, density-based clus-

tering, and hierarchical clustering vary in precision depend-

ing on the homogeneity of the dataset and are limited with

respect to the transformation of the original dataset during

training. Herein, the accuracy was improved by dividing the

data by the optimal patience hyperparameter value derived

from the neural networks. Based on this, the early stopping

algorithm was improved such that the homogeneity of the

dataset was unaffected by the FMC algorithm. The experi-

mental results revealed that the proposed technique demon-

strated improved clustering performance with respect to

latency, loss value, and accuracy by factors of 2.33, 2.71,

and 2.5, respectively, compared with the conventional method

with fewer epochs.

The proposed EFMC heuristically sets the patience hyper-

parameter in advance during data preprocessing according to

the dataset. Although accuracy and homogeneity are guaran-

teed, it has a structural limitation that slows down as the

types of datasets become more diverse. Future research will

focus on increasing efficiency by establishing an experimen-

tal environment considering various heterogeneous nodes

and by automatically setting an optimal patience hyperpa-

rameter.
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