• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.027 seconds

A Study on Development of Ship Economic Evaluation System Using ASMOD (ASMOD를 이용한 선박 경제성 평가시스템 구축에 관한 연구)

  • Shin, Soo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.213-220
    • /
    • 2008
  • The aim of this paper is to build up the design model using ASMOD(Adaptive Spline Modeling of Observation Data) for the optimum scale of fleet, ship particulars and ship speed, etc. ASMOD, which define membership functions of fuzzy rule as B-spline basis function, represents a whole system as the sum of the sub-model. As it reduces the number of division of the space generated by the fuzzy set of input variables, it has a advantage of simplification to model structure and is efficient to represent the non-linear model.

NEW INTELLIGENT APPROACH FOR PROJECT MANAGEMENT IN CONSTRUCTION INDUSTRY

  • D. Aparna;D. Sridhar;J. Rajani;B. Sravani;V.S.S. Kumar
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.366-370
    • /
    • 2005
  • The construction environment is dynamic in nature and is characterized by various degrees of uncertainties. The uncertainties such as lack of coordination, non availability of resources, condition of temporary structures and varying weather conditions have a significant impact on estimating the duration of activities. These are subjective, vague and imprecisely defined and are expressed in subjective measures rather than mathematical terms. Conventionally, various quantitative techniques such as CPM and PERT have emerged in construction industry. These techniques cannot solve the above problems and rely on human experts which may not always be possible. In such situations Artificial Intelligence tools such as fuzzy sets and neural networks handle such variables and provide global strategies. The present paper evaluates the effect of qualitative factors to identify the activity duration using new intelligent approach. The results are compared with conventional methods for effective project management. A case study is considered to demonstrate the applicability of fuzzy logic for project scheduling.

  • PDF

An Adaptive Search Strategy using Fuzzy Inference Network (퍼지추론 네트워크를 이용한 적응적 탐색전략)

  • Lee, Sang-Bum;Lee, Sung-Joo;Lee, Mal-Rey
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.2
    • /
    • pp.48-57
    • /
    • 2001
  • In a fuzzy connectionist expert system(FCES), the knowledge base can be constructed of neural logic networks to represent fuzzy rules and their relationship, We call it fuzzy rule inference network. To find out the belief value of a conclusion, the traditional inference strategy in a FCES will back-propagate from a rule term of the conclusion and follow through the entire network sequentially This sequential search strategy is very inefficient. In this paper, to improve the above search strategy, we proposed fuzzy rule inference rule used in a FCES was modified. The proposed adaptive search strategy in fuzzy rule inference network searches the network according to the search priorities.

Stabilization Control of Nonlinear System Using Adaptive Neuro-Fuzzy Controller (적응 뉴로-퍼지 제어기를 이용한 비선형 시스템의 안정화 제어)

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Gue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.730-737
    • /
    • 2001
  • In this paper, an stabilization control method using adaptive neuro-fuzzy controller(ANFC) is proposed for modeling of nonlinear complex systems. The proposed adaptive neuro-fuzzy controller implements system structure and parameter identification using the intelligent schemes together with optimization theory, linguistic fuzzy implication rules, and neural networks from input and output data of processes. The results show that the proposed method can produce the intelligence model with higher accuracy than other works achieved previously.

  • PDF

Design of FNN architecture based on HCM Clustering Method (HCM 클러스터링 기반 FNN 구조 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2821-2823
    • /
    • 2002
  • In this paper we propose the Multi-FNN (Fuzzy-Neural Networks) for optimal identification modeling of complex system. The proposed Multi-FNNs is based on a concept of FNNs and exploit linear inference being treated as generic inference mechanisms. In the networks learning, backpropagation(BP) algorithm of neural networks is used to updata the parameters of the network in order to control of nonlinear process with complexity and uncertainty of data, proposed model use a HCM(Hard C-Means)clustering algorithm which carry out the input-output dat a preprocessing function and Genetic Algorithm which carry out optimization of model The HCM clustering method is utilized to determine the structure of Multi-FNNs. The parameters of Multi-FNN model such as apexes of membership function, learning rates, and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization abilities of the model. NOx emission process data of gas turbine power plant is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF

Hybrid Filter Based on Neural Networks for Removing Quantum Noise in Low-Dose Medical X-ray CT Images

  • Park, Keunho;Lee, Hee-Shin;Lee, Joonwhoan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.102-110
    • /
    • 2015
  • The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.

Design of Space Search-Optimized Polynomial Neural Networks with the Aid of Ranking Selection and L2-norm Regularization

  • Wang, Dan;Oh, Sung-Kwun;Kim, Eun-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1724-1731
    • /
    • 2018
  • The conventional polynomial neural network (PNN) is a classical flexible neural structure and self-organizing network, however it is not free from the limitation of overfitting problem. In this study, we propose a space search-optimized polynomial neural network (ssPNN) structure to alleviate this problem. Ranking selection is realized by means of ranking selection-based performance index (RS_PI) which is combined with conventional performance index (PI) and coefficients based performance index (CPI) (viz. the sum of squared coefficient). Unlike the conventional PNN, L2-norm regularization method for estimating the polynomial coefficients is also used when designing the ssPNN. Furthermore, space search optimization (SSO) is exploited here to optimize the parameters of ssPNN (viz. the number of input variables, which variables will be selected as input variables, and the type of polynomial). Experimental results show that the proposed ranking selection-based polynomial neural network gives rise to better performance in comparison with the neuron fuzzy models reported in the literatures.

Machine Cell Formation using A Classification Neural Network

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.84-89
    • /
    • 2004
  • The machine cell formation problem is the problem to group machines into machine families and parts into part families so as to minimize bottleneck machines, exceptional parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. This paper proposes a new machine cell formation method based on the adaptive Hamming net which is a kind of neural network model. To show the applicability of the proposed method, it presents some experiment results and compares the method with other cell formation methods. From the experiments, we observed that the proposed method could produce good cells for the machine cell formation problem.

A Study on Development of Visual Navigation System based on Neural Network Learning

  • Shin, Suk-Young;Lee, Jang-Hee;You, Yang-Jun;Kang, Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • It has been integrated into several navigation systems. This paper shows that system recognizes difficult indoor roads without any specific marks such as painted guide line or tape. In this method the robot navigates with visual sensors, which uses visual information to navigate itself along the read. The Neural Network System was used to learn driving pattern and decide where to move. In this paper, I will present a vision-based process for AMR(Autonomous Mobile Robot) that is able to navigate on the indoor read with simple computation. We used a single USB-type web camera to construct smaller and cheaper navigation system instead of expensive CCD camera.

Part-Machine Grouping Using Production Data-based Part-Machine Incidence Matrix: Neural Network Approach (생산자료기반 부품-기계행렬을 이용한 부품-기계 그룹핑 : 인공신경망 접근법)

  • Won Yu-Gyeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.354-358
    • /
    • 2006
  • This study is concerned with the part-machine grouping(PMG) based on the non-binary part-machine incidence matrix in which real manufacturing Factors such as the operation sequences with multiple visits to the same machine and production volumes of parts are incorporated and each entry represents actual moves due to different operation sequences. The proposed approach adopts Fuzzy ART neural network to quickly create the initial part families and their associated machine cells. To enhance the poor solution due to category proliferation inherent to most artificial neural networks, a supplementary procedure reassigning parts and machines is added. To show effectiveness of the proposed approach to large-size PMG problems, a psuedo-replicated clustering procedure is designed and implemented.

  • PDF