• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.028 seconds

adaptive neuro-fuzzy inference system;daily solar radiation;Illinois;limited weather variables;

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.483-486
    • /
    • 2015
  • The objective of this study is to develop generalized regression neural networks (GRNN) model for estimating daily solar radiation using limited weather variables at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using GRNN model. From the performance evaluation and scatter diagrams of GRNN model, GRNN 3 (three input) model produces the best results for both stations. Results obtained indicate that GRNN model can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois. These results testify the generation capability of GRNN model and its ability to produce accurate estimates in Illinois.

  • PDF

Application of Artificial Intelligence for the Management of Oral Diseases

  • Lee, Yeon-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.47 no.2
    • /
    • pp.107-108
    • /
    • 2022
  • Artificial intelligence (AI) refers to the use of machines to mimic intelligent human behavior. It involves interactions with humans in clinical settings, and augmented intelligence is considered as a cognitive extension of AI. The importance of AI in healthcare and medicine has been emphasized in recent studies. Machine learning models, such as genetic algorithms, artificial neural networks (ANNs), and fuzzy logic, can learn and examine data to execute various functions. Among them, ANN is the most popular model for diagnosis based on image data. AI is rapidly becoming an adjunct to healthcare professionals and is expected to be human-independent in the near future. The introduction of AI to the diagnosis and treatment of oral diseases worldwide remains in the preliminary stage. AI-based or assisted diagnosis and decision-making will increase the accuracy of the diagnosis and render treatment more precise and personalized. Therefore, dental professionals must actively initiate and lead the development of AI, even if they are unfamiliar with it.

Web Page Evaluation based on Implicit User Reactions and Neural Networks

  • Lee, Dong-Hoon;Kim, Jae-Kwang;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.181-186
    • /
    • 2012
  • This paper proposes a method for evaluating web pages by considering implicit user reaction on web pages. Usually users spend more time and make more reactions, such as clicking, dragging and scrolling, while reading interesting pages. Based on this observation, a web page evaluation method by observing implicit user reaction is proposed. The system is designed with Ajax for observing user reactions, and neural networks for learning correlation between user reactions and usefulness of pages. The amounts of each type of user reactions are inputted to neural networks. Also the numbers of characters and images of pages are used as inputs because the amount of users' behaviors has a tendency to increase as the length of pages increase. The experiment is conducted with 113 people and 74 pages. Each page is ranked by users with a questionnaire. The proposed method shows more close ranking results to the user ranks than Google. That is, our system evaluates web pages more closely to users' viewpoint than Google. Although our experiment is limited, our result shows powerful potential of new element for web page evaluation. Some approaches evaluate web pages with their contents and some evaluate web pages with structural attributes, particularly links, of pages. Web page evaluation is for users, so the best evaluation can be done by users themselves. So, user feedback is one of the most important factors for web page evaluation. This paper proposes a new method which reflects user feedbacks on web pages.

A Study on Multi-layer Fuzzy Inference System based on a Modified GMDH Algorithm (수정된 GMDH 알고리즘 기반 다층 퍼지 추론 시스템에 관한 연구)

  • Park, Byoung-Jun;Park, Chun-Seong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.675-677
    • /
    • 1998
  • In this paper, we propose the fuzzy inference algorithm with multi-layer structure. MFIS(Multi-layer Fuzzy Inference System) uses PNN(Polynomial Neural networks) structure and the fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Hendling), and uses several types of polynomials such as linear, quadratic and cubic, as well as the biquadratic polynomial used in the GMDH. In the fuzzy inference method, the simplified and regression polynomial inference methods are used. Here, the regression polynomial inference is based on consequence of fuzzy rules with the polynomial equations such as linear, quadratic and cubic equation. Each node of the MFIS is defined as fuzzy rules and its structure is a kind of neuro-fuzzy structure. We use the training and testing data set to obtain a balance between the approximation and the generalization of process model. Several numerical examples are used to evaluate the performance of the our proposed model.

  • PDF

Implementation of Process System and Intelligent Monitoring Environment using Neural Network

  • Kim, Young-Tak;Kim, Gwan-Hyung;Kim, Soo-Jung;Lee, Sang-Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.56-62
    • /
    • 2004
  • This research attempts to suggest a detecting method for cutting position of an object using the neural network, which is one of intellectual methods, and the digital image processing method. The extraction method of object information using the image data obtained from the CCD camera as a replacement of traditional analog sensor thanks to the development of digital image processing. Accordingly, this research determines the threshold value in binary-coding of an input image with the help of image processing method and the neural network for the real-time gray-leveled input image in substitution for lighting; as a result, a specific position is detected from the processed binary-coded image and an actual system designed is suggested as an example.

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

Effective Artificial Neural Network Approach for Non-Binary Incidence Matrix-Based Part-Machine Grouping (비이진 연관행렬 기반의 부품-기계 그룹핑을 위한 효과적인 인공신경망 접근법)

  • Won, You-Kyung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.4
    • /
    • pp.69-87
    • /
    • 2006
  • This paper proposes an effective approach for the part-machine grouping(PMG) based on the non-binary part-machine incidence matrix in which real manufacturing factors such as the operation sequences with multiple visits to the same machine and production volumes of parts are incorporated and each entry represents actual moves due to different operation sequences. The proposed approach adopts Fuzzy ART neural network to quickly create the Initial part families and their machine cells. A new performance measure to evaluate and compare the goodness of non-binary block diagonal solution is suggested. To enhance the poor solution due to category proliferation inherent to most artificial neural networks, a supplementary procedure reassigning parts and machines is added. To show effectiveness of the proposed approach to large-size PMG problems, a psuedo-replicated clustering procedure is designed. Experimental results with intermediate to large-size data sets show effectiveness of the proposed approach.

On Developing Intelligent Automatic Transmission System Using Soft Computing (Soft Computing을 이용한 지능형 자동 변속 시스템 개발)

  • 김성주;김창훈;김성현;연정흠;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.133-136
    • /
    • 2001
  • This paper partially presents a Hierachical neural network architecture for providing the intelligent control of complex Automatic Transmission(AJT) system which is usually nonlinear and hard to model mathematically. It consists of the module to apply or release an engine brake at the slope and that to judge the intention of the driver. The HNN architecture simplifies the structure of the overall system and is efficient for the learning time. This paper describes how the sub-neural networks of each module have been constructed and will compare the result of the intelligent hJT control to that of the conventional shift pattern.

  • PDF

Structural Design of Differential Evolution-based Multi Output Radial Basis Funtion Polynomial Neural Networks (차분 진화알고리즘 기반 다중 출력 방사형 기저 함수 다항식 신경 회로망 구조 설계)

  • Kim, Wook-Dong;Ma, Chang-Min;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1964-1965
    • /
    • 2011
  • 본 연구에서는 패턴분류를 위해 기존의 방사형 기저 함수 신경회로망(Radial Basis Funtion Neural Network)과 다항식 신경회로망(Polynomial Neural Network)을 결합한 다중 출력 방사형 기저 함수다항식 신경회로망 (Multi Output Radial Basis Funtion Polynomial Neural Network)의 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층에 기존의 다항식 노드 대신 다중 출력 형태의 RBFNN을 적용 한다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. PNN은 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Differential Evolution(DE)을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 패턴분류기로써의 제안된 모델을 평가하기 위해 pima 데이터를 이용하였다.

  • PDF

EPB-TBM performance prediction using statistical and neural intelligence methods

  • Ghodrat Barzegari;Esmaeil Sedghi;Ata Allah Nadiri
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.197-211
    • /
    • 2024
  • This research studies the effect of geotechnical factors on EPB-TBM performance parameters. The modeling was performed using simple and multivariate linear regression methods, artificial neural networks (ANNs), and Sugeno fuzzy logic (SFL) algorithm. In ANN, 80% of the data were randomly allocated to training and 20% to network testing. Meanwhile, in the SFL algorithm, 75% of the data were used for training and 25% for testing. The coefficient of determination (R2) obtained between the observed and estimated values in this model for the thrust force and cutterhead torque was 0.19 and 0.52, respectively. The results showed that the SFL outperformed the other models in predicting the target parameters. In this method, the R2 obtained between observed and predicted values for thrust force and cutterhead torque is 0.73 and 0.63, respectively. The sensitivity analysis results show that the internal friction angle (φ) and standard penetration number (SPT) have the greatest impact on thrust force. Also, earth pressure and overburden thickness have the highest effect on cutterhead torque.