• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.024 seconds

Design of Echo Classifier Based on Neuro-Fuzzy Algorithm Using Meteorological Radar Data (기상레이더를 이용한 뉴로-퍼지 알고리즘 기반 에코 분류기 설계)

  • Oh, Sung-Kwun;Ko, Jun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.676-682
    • /
    • 2014
  • In this paper, precipitation echo(PRE) and non-precipitaion echo(N-PRE)(including ground echo and clear echo) through weather radar data are identified with the aid of neuro-fuzzy algorithm. The accuracy of the radar information is lowered because meteorological radar data is mixed with the PRE and N-PRE. So this problem is resolved by using RBFNN and judgement module. Structure expression of weather radar data are analyzed in order to classify PRE and N-PRE. Input variables such as Standard deviation of reflectivity(SDZ), Vertical gradient of reflectivity(VGZ), Spin change(SPN), Frequency(FR), cumulation reflectivity during 1 hour(1hDZ), and cumulation reflectivity during 2 hour(2hDZ) are made by using weather radar data and then each characteristic of input variable is analyzed. Input data is built up from the selected input variables among these input variables, which have a critical effect on the classification between PRE and N-PRE. Echo judgment module is developed to do echo classification between PRE and N-PRE by using testing dataset. Polynomial-based radial basis function neural networks(RBFNNs) are used as neuro-fuzzy algorithm, and the proposed neuro-fuzzy echo pattern classifier is designed by combining RBFNN with echo judgement module. Finally, the results of the proposed classifier are compared with both CZ and DZ, as well as QC data, and analyzed from the view point of output performance.

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

Selecting Minimized Input Features for Detecting Automatic Fall Detection Based on NEWFM (낙상 검출을 위한 NEWFM 기반의 최소의 특징입력 선택)

  • Shin, Dong-Kun;Lee, Sang-Hong;Lim, Joon-Shik
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.17-25
    • /
    • 2009
  • This paper presents a methodology for a fall detection using the feature extraction method based on the neural network with weighted fuzzy membership functions (NEWFM). The distributed non-overlap area measurement method selects the minimized number of input features by removing the worst input features one by one. Nineteen number of wavelet transformed coefficients captured by a triaxial accelerometer are selected as minimized features using the non-overlap area distribution measurement method. The proposed methodology shows that sensitivity, specificity, and accuracy are 95%, 97.25%, and 96.125%, respectively.

  • PDF

PREDICTION OF THE REACTOR VESSEL WATER LEVEL USING FUZZY NEURAL NETWORKS IN SEVERE ACCIDENT CIRCUMSTANCES OF NPPS

  • Park, Soon Ho;Kim, Dae Seop;Kim, Jae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.373-380
    • /
    • 2014
  • Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

Robust Control of Current Controlled PWM Rectifiers Using Type-2 Fuzzy Neural Networks for Unity Power Factor Operation

  • Acikgoz, Hakan;Coteli, Resul;Ustundag, Mehmet;Dandil, Besir
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.822-828
    • /
    • 2018
  • AC-DC conversion is a necessary for the systems that require DC source. This conversion has been done via rectifiers based on controlled or uncontrolled semiconductor switches. Advances in the power electronics and microprocessor technologies allowed the use of Pulse Width Modulation (PWM) rectifiers. In this paper, dq-axis current and DC link voltage of three-phase PWM rectifier are controlled by using type-2 fuzzy neural network (T2FNN) controller. For this aim, a simulation model is built by MATLAB/Simulink software. The model is tested under three different operating conditions. The parameters of T2FNN is updated online by using back-propagation algorithm. The results obtained from both T2FNN and Proportional + Integral + Derivate (PID) controller are given for three operating conditions. The results show that three-phase PWM rectifier using T2FNN provides a superior performance under all operating conditions when compared with PID controller.

A Study on Multi-Fault Diagnosis for Turboshaft Engine of UAV Using Fuzzy and Neural Networks (퍼지 및 신경망을 이용한 무인 항공기용 터보축 엔진의 다중손상진단에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Koo, Young-Ju;Lee, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.556-561
    • /
    • 2009
  • The UAV(Unmanned Aerial Vehicle) that is remotely operating in various and long flight environments must have a very reliable propulsion system. Precise fault diagnosis of the turbo shaft engine for the Smart UAV that has the vertical take-off, landing and forward flight behaviors can promote reliability and availability. This work proposes a new diagnostic method that can identify the faulted components from engine measuring parameter changes using Fuzzy Logic and quantify its faults from the identified fault pattern using Neural Network Algorithms. The proposed diagnostic method can detect not only single fault but also multiple faults.

Design of improved Mulit-FNN for Nonlinear Process modeling

  • Park, Hosung;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.2-102
    • /
    • 2002
  • In this paper, the improved Multi-FNN (Fuzzy-Neural Networks) model is identified and optimized using HCM (Hard C-Means) clustering method and optimization algorithms. The proposed Multi-FNN is based on FNN and use simplified and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and genetic algorithms (GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parame...

  • PDF

Overload Detection and Control for Switching Systems using Fuzzy Rules

  • Rhee, Chung-Hoon;Rhee, Byung-Ho;Cho, Sung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4E
    • /
    • pp.28-34
    • /
    • 1998
  • In most switching system, the processing unit is designed to work efficiently even at relatively high loads, but when the offered traffic exceeds a particular level, the rate of completed calls can fall drastically. A single call handled by the switching system consists of a sequence of events or messages that has to be processed by the control unit. The control unit is not only incapable of handling all of the offered calls, but also its call handling capability can drop as the offered load increases. The real time available for call processing is a critical resource that requires careful management. Therefore, the overloading of this resource must be detected by a subscriber in the from of a dial tone delay or an uncompleted call which is either blocked or mishandled. The subscriber may respond by either dialing prematurely or by re-attempting a call. This action can further escalate the processors load, which is spent for uncompleted calls. Unless a proper control is used, the switching system can finally break down. In this paper, we paper, we propose a fuzzy overload detection and control method for switching systems, which can by generating fuzzy rules via fuzzy aggregation networks. Simulation results involving a switching system is given.

  • PDF

Development of Global Function Approximations of Desgin optimization Using Evolutionary Fuzzy Modeling

  • Kim, Seungjin;Lee, Jongsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1206-1215
    • /
    • 2000
  • This paper introduces the application of evolutionary fuzzy modeling (EFM) in constructing global function approximations to subsequent use in non-gradient based optimizations strategies. The fuzzy logic is employed for express the relationship between input training pattern in form of linguistic fuzzy rules. EFM is used to determine the optimal values of membership function parameters by adapting fuzzy rules available. In the study, genetic algorithms (GA's) treat a set of membership function parameters as design variables and evolve them until the mean square error between defuzzified outputs and actual target values are minimized. We also discuss the enhanced accuracy of function approximations, comparing with traditional response surface methods by using polynomial interpolation and back propagation neural networks in its ability to handle the typical benchmark problems.

  • PDF

Neuro-Fuzzy Algorithm for Nuclear Reactor Power Control : Part I

  • Chio, Jung-In;Hah, Yung-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.52-63
    • /
    • 1995
  • A neuro-fuzzy algorithm is presented for nuclear reactor power control in a pressurized water reactor. Automatic reacotr power control is complicated by the use of control rods because of highly nonlinear dynamics in the axial power shape. Thus, manual shaped controls are usually employed even for the limited capability during the power maneuvers. In an attempt to achieve automatic shape control, a neuro-fuzzy approach is considered because fuzzy algorithms are good at various aspects of operator's knowledge representation while neural networks are efficinet structures capable of learning from experience and adaptation to a changing nuclear core state. In the proposed neuro-fuzzy control scheme, the rule base is formulated based ona multi-input multi-output system and the dynamic back-propagation is used for learning. The neuro-fuzzy powere control algorithm has been tested using simulation fesponses of a Korean standard pressurized water reactor. The results illustrate that the proposed control algorithm would be a parctical strategy for automatic nuclear reactor power control.

  • PDF