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Abstract

In most switching systems, the processing unit is designed to work efficiently even at relatively high loads, but when 

the offered traffic exceeds a particular level, the rate of completed calls can fall drastically. A single call handled by the 
switching system consists of a sequence of events or messages that has to be processed by the control unit. The control 
unit is not only incapable of handling all of the offered calls, but also its call handling capability can drop as the offered 

load increases. The real time available for call processing is a critical resource that requires careful management. Therefore, 
the overloading of this resource must be detected by a subscriber in the form of a dial tone delay or an uncompleted call 
which is either blocked or mishandled. The subscriber may respond by either dialing prematurely or by re-attempting a 

call. This action can further escalate the processors load, which is spent for uncompleted calls. Unless a proper control is 
used, the switching system can finally break down. In this paper, we propose a fuzzy overload detection and control 

method for switching systems, which can be obtained by generating fuzzy rules via fuzzy aggregation networks. Simulation 

results involving a switching system is given.

I. Introduction

Most overload control strategies for switching systems 
consist of an overload indicator and a rejection procedure. 

If the overload indicator determines the system is in over­
load, the rejection procedure admits either no calls or a 
limited number. However, it is difficult to say whether 

the system is in an overload state and it is frequently not 
easy to find a parameter whose very-short tenn values 
provide an accurate indication of the state of the pro­

cessor [1].
In this paper, we suggest a fuzzy overload detection 

and control method for switching systems, which can be 
obtained by generating fuzzy rules via fuzzy aggregation 

networks. In section 2, we describe an overload control 
mod이 for a switching system and propose a fuzzy rule 

generation algorithm, which can estimate the membership 
functions, detect the redundant inputs, and generate the 
fuzzy rules from measured data. In section 3, we define 

the classes of the switching system load state and pro­
pose a fuzzy overload controller, which consists of an 

off-line learning and an on-line control function. To show 
the usefulness of the proposed fuzzy rule generation 

algorithm, the simulation of the load class detection for a 

small PABX switching system is carried out.

II. Overload Contr이 and 하le Fuzzy R니& Gen­
eration Algorithm

The overload control of a switching system can be car­
ried out by two functions : overload detection and control 
action. The overload detection procedure is a mapping of 

the monitored system parameters to the degree of the 
systems load state. The control action is an optimization 

procedure used to achieve the maximum engineered thr­
oughput and to determine the control input value against 
the degree of the systems load state. To implement the 

overload controller for a switching system, we need to 

select the appropriate monitored system parameters, clas­
sify the adequate degrees of the system load state, and 

seek the optimized control function. In doing so, we define 
the overload control problem for a switching system as 

follows. Let X={x\, ..., x„) be a set of system param­

eters, Y= the degrees of the system load

state, U~ (...，的)the control input vector, 7V(X, U) 

the system throughput, and N*  the engineered throughput. 

Then, the overload detection is to find a relationship 
between X and Y, such that rule R : X—* 匕 and the 

overload control is to find a relationship between (X, Y) 

and 17, which can make the system throughput N(X, U) 

approach N*,  such that rule & [ N*  : (X, Y)—W.
However, it is not easy to find a relationship between 

the observed system parameters ahd the referenced load 
state, and a relationship between the system load state and 
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the control input, since the switching systems behavior is 
non-linear and time-delayed to the input load. Hence, it 
is difficult to find a set of system parameters which can 

reasonably discriminate the degree of the systems load 
state. Moreover, all the information that can be obtained 
is from measured data and knowledge of the switching 

operations are represented by vague descriptions. Therefore, 
we propose a fuzzy rule-generation method to find the set 

of system parameters and the relationships from measured 
data.

Properties (features) of the parameters related to the 
overload control can provide the necessary entities for pro­
per rule generation. When features are not well defined, 
methods [2]-[5] for managing the uncertainty inherent in 
properties by means of hierarchical fuzzy aggregation net­

works have been discussed. In these hierarchical networks, 
the inputs to each node are the degree of satisfaction of 
each of the sub-criteria, and the output is the aggiegated 
degree of satisfaction of the criterion. It has been shown 

that optimization procedures based on gradient descent 
can be used to determine the proper type of aggregation 

connective and parameters at each node, given only an 
approximate structure of the network and given a set of 

training data that represent the inputs at the bottom-most 
level and the desired outputs at the top-most level [2][3]. 

Also, it has been shown that such networks are capable 
of detecting certain types of redundant features in a de­
cision-making problem.

If the attributes, properties, and relationships used in 
antecedent clauses of rules R\ and Ri in a switching sys­

tem are interpreted as criteria, then one can model rule­
based load status labeling also as a hierarchical network. 
In this paper, we use this idea and the redundancy dete­
ction capability of fuzzy aggregation networks to autom­
atically generate fuzzy rules from measured (training) data.

2.1 Estimation of Membership Functions of 
Linguistic Labels

Let M be the number of outputs and K the number of 
inputs. The first step in rule generation is to generate the 
membership functions for the various linguistic labels that 
each input can take. As shown in [4], the member- ship 

functions may be estimated from smoothed histograms of 

the input values. Let 刀denote the smoothed hist­

ogram constructed from output j of input k. We now 
present a method to estimate the membership functions 
of the linguistic labels for an input.

A suitable parameterized function is chosen to model 

the membership function of a linguistic label. Let hk(x, p) 

denote the chosen parameterized function where p = 
(pi, ..., /)„) is the parameter vector. Then each of the

functions can be approximated by a set H\ =

｛川心，臨| / = 1,.… 以｝ of such parameterized funct­

ions, where L!k is the number of parameterized functions 

required for a reasonable approximation of mJk(xk).

To utilize a flexible function for modeling, we consider 
non-symmetric Gaussian function as suitable parameterized 
functions as

G(x, c, Jj) if x< c
F(x) = (1)

, G(xt <?,(72) if 尤그 c, 

where c is the mean value and ((j2) is the left (right) 

standard deviation. If a membership function

consists of multiple peaks, we can model it as a sum of 

such ]jk asymmetric functions as follows.

u
써(""%(*= 斗 血FU"), (2)

where

, 허知) if K
F\3 = . . (3)

成Q if 尤金느。么

is the ith parametrized function for feature xk in class j. 

Here,优=(邳，"食，房如).

In order to approximate the smoothed histogram 

m!k｛xk)for input as a sum of parametrized functions, 

we could minimize the following objective function

JK、认、)U仏(笆t,力%) 一 (4) 

where h3k(xk, denotes the 严 parametrized function 

chosen to model the membership function Q for 

input Xk in class j. We can now use a gradient descent 

method to estimate the parameter vector by the 

following update rule 

i舟 z = "灣-o희?, 
OPki

(5)

where p is a positive learning constant. The parameter 
vector can be iteratively updated until there is little or no 

change in the parameter values. This occurs when the
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partial derivatives of J,k with respect to each component 

of 戒 are approximately equal to zero (i.e., when the 

chosen approximation of parametrized functions hjk(xk, />%) 

closely matches If we use non-symmetric Gaus­

sian functions as our choice for hJk(xk, £>£), the partial 

derivatives of with respect to each component of 

甘成=(Q%，M,。{际，房点)are

and

Top layer

Middle layer

Bottom layer

Input layer

Figure 1. An approximate network structure for generating rules.

=（戶％（孙）一就；（孙））卩%（外）, (6)

으[ =
8* 一

(i기- m{(xk)) ~②- if N、&

(以("-祀(자))织쓰'/쏴쓥―室 if

⑺

證 =(殆("-쩌(x.)) 

for / — 1,2.
(8)

For gradient descent methods, the choice of the initial 
values for the parameters is critical. Therefore, we can 

use a heuristic approach to obtain the initial parameters 

for the case of Gaussian functions [5].

2.2 F나zzy Aggregation Networks for Rule 
Generation

The next step is to obtain a set of rules which possibly 

contain multiple antecedent clauses joined together either 
conjunctive or disjunctively. To achieve this, we use an 
approximate three-layer fuzzy aggregation network which 

shown in Fig. 1. From the figure, the bottom layer con­

sists of K groups of nodes, with the kth group consisting 

of Lk nodes. Each group corresponds to an input. The 

ith node in the kih group uses (the membership fun­

ction of the ith linguistic label for input k) as the activ­

ation function. The middle layer consists of K groups of 

Af nodes each, where M is the number of outputs. The 

ith node in group in the bottom layer is connected to 

the jth node in the corresponding grouping the middle 

layer if input k is considered non-redundant for output j 

and the support of has a non-empty intersection with 

the support of mJk(xk). Similarly, the jlh node of every 

응!pup in the middle layer that has a connection from the 

bottom layer is connected to the jth node of the top layer 

for j= M. All middle and top-layer nodes use a 

suitable fuzzy aggregation function (such as the general­
ized mean) as the activation function.

With this initial approximate aggregation network, train­

ing is initiated. The desired values in the training data are 
chosen to be 1 for the output from which the training 

data was extracted, and 0 for the remaining outputs. The 
learning is implemented using a modified gradient descent 
method as described in [2] [3]. The nodes in the middle 

and top layers can represent either conjunctive or disjun­

ctive nodes depending on the final values of the para­
meters of the aggregation function. Due to the constraints 

on the weights, some of the weights eventually become 
very small, indicating that the corresponding inputs are 
redundant. Thus, the training procedure has the ability to 
detect certain types of redundancies. When the training is 

complete, the resulting network can be interpreted as a 

set of fuzzy rules.

III. Fuzzy Overload Controller for a Switching 
System

For an effective overload controller, it must be able to 

provide control inputs in real-time, respond to the short 
and long-term overloads properly, and easily be constructed 
for various types of switching systems. Therefore, when 

selecting the control system parameters or structure of the 
overload controller, we consider the simplicity of the con­

trol algorithm and the design flexibility of the controller.

The number of offered calls and the occupancy rate 

of the processor are the main components of the monit­
ored input vector X, since these can be monitored easily 
and can represent the overload symptoms prominently 

relative to the queue length or the response delay time 

for a call setup [6]. Coupling with the monitored inputs, 
we determine the number of admitted calls during the 

control unit time as the control input U, and select the 
total number of the completed calls as the system throu­

ghput N.
In order to achieve a certain degree of sensitivity to 

the short-term overload and to guarantee control stability, 
the concept of call holding time is introduced to select 
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an overload detection unit time and the degree of the 
system load state is classified into three categories. Next, 

the classification of the system load state is described [7].

3.1 Overload Detection and Classification
We define the different classes of overload using a 

throughput curve that is recommended by ITU-T as 
shown in Fig. 2. The engineered capacity N*  is designed 
to operate below the engineered processors occupancy 

pm, and the engineered ratio of number of uncompleted 

and offered call, rm. The tear-down point kQ on the 

slope of the offered load and throughput in Fig. 2 shows 
the starting point of deterioration of the system.

Figure 2. Classification regions of the load status.

It is necessary to detect this point prior to overload in 
order to obtain enough time to control the short and 

long-term overloads. Therefore, we define the load status 
of the system into three classes : normal state (class 1), 

pre-overload state (class 2), and overload state (class 3) 
as shown in Fig. 2. To describe the classes of the systems 
state, we consider the time it takes prior to overload. 

Since an overload starts after all the resources are 
occupied for the calls in service, it is reasonable to take 

the average call holding time th as the reference of the 

detection un社 time td.

We now define the three classes of the systems load 
status. Let £ be the set of input load trajectories possible 

to exist in a switching system such that L= (Li(h).........

Lz( n)}. A switching system characteristics can be pre­

sented by the set of state trajectories S= {S/w), 

S乂 n)}, where a point of the state trajectory S；( n) can 

be defined by a -dimensional vector, St(k) = (/rl(A), 

...t }. The state features are selected among the 

switching system parameters or as a combination of ones.

Let (r,(l)f ...,乙(，z)} be the sequence of the ratio 

of number of uncompleted and offered calls, and

.--,P/( w)} the processors occupancy generated from the 

input load trajectory Lj(n), respectively. The set of sys­

tem break-down points generated from £,(«), K", can 

be defined as Klb =後} such that r^k +尤)，...，

> rmt rXk~\) < rm and @以+y)....................... > p„it

P,(k~ 1) < . The set of overload recovery points gen­

erated from L,(n), K；, can be defined as K； = {々} 

such that r,(k +x),，(由)b，”，1)> rm and 

P,{k+y)t where 尤,y느为”.

Let k}, denote the call holding step time (i.e., kh = £方/々)• 

Then, the set of overload start points generated from 

L((m), K, can be defined Kl0— {k} such that kso = 

k'b — kh and 艮作 K\, and the set of pre-overload start 

points generated from K, can be defined as

Kp = {k\ such that k\ = ko~^kh and 든 Then, 

the load status of a switching system can be classified as 

an overload state class Co if

Co= 0 C'o, where Co= {S^\K'I><.k<.K'r] 
J= 1

and pre-overload state class Cp if

Cp= y( Cp, where % = {S為)|K"眼=&}

and normal state class Cn if

C„ = S-C。一 Cp .

Using the above definitions, we can formulate the over­
load detection process as a classification problem.

3.2 F니zzy Load Estimator and Controller
The functional block diagram of the fuzzy overload 

controller is shown in Fig. 3. The fuzzy overload con­
troller consists of three basic components : a system ident­
ification block, control tuning block, and fuzzy control 

block. The system identification and control tuning blocks 

are located in the simulation model and are operated in 
the off-line mode. The fuzzy control block is coupleci 
with the real switching system and is designed to react 
to the short-term ove리oad.

Before implementing the proposed fuzzy overload con­
troller, it is required to prepare two sets of training data 

for estimating the rules T?】and R2. For identifying the 

system overload characteristics, the pairs (X, Y) are coll­
ected from the simulation model or the real system. We
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Figure 3. A functional block diagram for the fuzzy overload 
controller.

choose the number of the offered calls at control unit 

time 4( n), the accumulated number of the offered calls 

for a mean call holding time An_kh(n\ and the accum나 1- 

ated number of the offered calls for three times the 

mean call holding time An_3kh(n) as x2, and x；!, 

respectively. The occupancy rate of the processor at con­

trol unit time p( n), the accumulated occupancy rate of 

the processor for a mean call holding time pn. kil(_ n), 

and the accumulated occupancy rate of the processor for 

three times the mean call holding time An n) are 

selected as x5, and x6, respectively. The class of the 

load state is selected as Y- For tuning the control rule 

R2, the pairs of (X, Y, U, N) are collected. We choose 

the number of allowed calls for next control unit time as 

U and the number of completed calls as N.
The fuzzy overload controller is organized as follows :

Step 1 : By inserting the standard overload input patterns 
to a simulation model or a real system, collect 

the (由，...,x6, V) training data. Remove the 

redundant input components (if any) using red­

undancy detection methods [4]. Estimate the me­

mbership functions of the linguistic labels for the 
non-redundant inputs X*.  Generate the fuzzy rule 
Rt between X and Y, using the fuzzy aggregation 

network.
Step 2 : As a control law, perform a_no-control_action for 

the normal load state and reject the offered calls 

for the overload state. With the remits from step 
1, subdivide the pre-overload state into q levels 

and make various control lookup tables which 
consist of algorithms for reducing the rate of (he 
allowable offered call according to the pre-over- 
load levels. Collect the (X*,  Y, U, N) data by 

utilizing the standard overload input patterns and 
control lookup tables. Find the control lookup

table that maximizes the system throughput.
Step 3 : Collect the X*  data for a control unit time and 

determine the systems overload state by using the 

fuzzy rule R] and the maximum defuzzification 

scheme. Apply the control input that is selected 

from the control lookup table.

Step 4 : Save the (%】，...,Y) data pairs collected 

at sample time ts. Update the control lookup 

ta미e using steps 1 and 2 in the off-line mode.

IV. Sim니ation Results

To show the effectiveness of the proposed fuzzy rule 

generation algorithm, we carry out some simulations 나sing 
a sim니ation mod야 called EMS PABX [8]. All sim니ation 
were performed with the Distributed Processor System 
Simulator (DPSS) as described in more detail in [6]. In 

the model, n and th are chosen to be 10 and 90 seconds, 

respectively. Also, rm = 0.05 and p/0.75. The training 

data was collected by simulating 3 types of the input 
load trajectories that can cause an overload to the system : 

W 抵)=Nepmn, +

and 妇(〃) = — Pm) 이虹 + M(rw~0.1).

The described simulation may be considered as a 

3-output/6-input classification pn가)lem. We extracted 50 
samples from each output for the training data and each 

of the six inputs was mapped into the interval [0,1]. 
Inputs 1, 4, and 5 were eliminated easily using redund­

ancy detection methods [4],
Fig. 4(a) shows the smoothed histograms for one of 

the three non-redundant inputs and Fig. 4(b) shows the 

membership hmetions of the resulting linguistic labels 

generated by fitting non-symmetric Gaussian to the smoot­

hed histograms. The resulting approximate network for 
rule generation and final reduced network after training 

arc shown in Fig. 5. Table 1 shows the final weights and 
the parameter p values. The rules obtained from the final 

network are listed below.

Figure 4. (a) Smoothed histograms and 
linguistic labels for feature 2.

(b) Gaussian fitted
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-(a)

(b)

Figure 5. (a) Approximate network structure for generating 
rules (b) Reduced network after training.

Table 1. Values of weights and parameter p for the reduced 
network.

node 1 2 3 4 5 6 7 8

weights 0.476 0.274
0.524 0.726

1.000 1.000 1.000 1.000 1.000 1.000

P -6.021 -0.615 1.018 0.922 0.988 0.982 1.006 -1.121

Rule 1 : IF the accumulated number of offered calls (3丿臨 

interval) is LOW AND 

accumulated processor occupancy (3知 interval) 

is LOW
THEN the class is Norm이 State.

Rule 2 : IF the accumulated number of offered calls (kh in­

terval) is MEDIUM AND

accumulated processor occupancy (3饥 interval) is 

MEDIUM
THEN the class is Pre-overload State.

Rule 3 : IF the accumulated number of offered calls (3如 in­

terval) is HIGH
THEN the class is Overload State.

The outputs of the rule generation network for each sample 
was defuzzified 나sing the maximum-membership defuzzif­
ication scheme. The rate of correct classification resulted 
in 92%.

V. Conclusions

The problem of overload control for a switching sys­
tem can be defined as finding a relationship between the 

monitored system parameters and the degree of the sys­

tem load state, and also finding a relationship between the 
system load status and optimal control input. Due to 

non-linearity and time-varyin융 switching systems internal 
behavior, it is diffiw山 to find parameters to express the 
overload status prominently. Also, it is difficult to extract 
overload detection and optimal control rules only with 
measured data. To provide a flexible overload controller, 
we proposed a fuzzy rule generation algorithm and a fuzzy 
overload controller. We classified the switching system 

load state into normal, pre-overload, and overload states 
and subdivided the pre-overload state into q levels. Fuzzy 
relations between monitored syst이n parameters and the 

degree of the system load state were extracted by using 
estimated membership functions and fuzzy aggregation 
networks. The fuzzy overload controller and fuzzy control 
block which operates in two phases, was suggested. 
Simulation results show that the proposed fuzzy rule ge­

neration algorithm is effective in the overload detection 
and control in switching systems.
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