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Abstract

In mast switching systems, the processing unit is designed to work efficicntly cven at relatively high loads, but when
the offered iraffic excceds a particular level, the rate of completed calls can fall drastically. A single call handled by the
switching system consists of a sequence of events or messages that has to be processed by the control unit. The conteol
unit is not only incapable of handling all of the offered calls, but also its call bandling capability can drop as the offered
load increascs. The real time available for call processing is a critical resource that requires careful management. Therefore,
the overloading of this resowrce must be detected by a subscriber in the form of a dial tone delay or an uncompleted call
which is either blocked or mishandled. The subscriber may respond by either dialing prematurely or by rc-attempting a
call. This action can forther escalate the processors load, which is spent for uncompleted calls. Unless a proper conteol is
used, the swilching system can finaily break down. In this paper, we propose a fuzzy overload detection and control
methoed for switching systems, which can be obtained by generating fuzzy rules via fuzzy aggregation networks. Simulation

results involving a switching system is given.

I. Introduction

Most overload control strategies for switching systems
consist of an overload indicator and a rejection procedure.
If the overload indicator determines the system is in over-
load, the rejection procedure admits cither no calls or a
limited number. However, it is difficult 1o say whether
the system is in an overload state and it is frequently not
easy lo find a parameter whose very-short term values
provide an accurate indication of the state of the pro-
cessor [1].

In this paper, we suggest a fuzzy overload detection
and control method for switching systems, which can be
obtained by generating fuzzy mules via fuzzy aggregation
networks. In section 2, we describe an overload control
maodel for a switching system and propose a fuzzy rule
generation algorithm, which can estimate the membership
functions, detect the redundant inputs, and gencrate the
fuzzy rules from measurcd data. In section 3, we define
the classes of the switching system load state and pro-
pose a fuzzy overload controller, which consists of an
off-line leaming and an on-linc control function. To show
the usefulness of the proposed fuzzy rule gencration
algorithm, the simulation of the load class detection for a
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II. Overload Control and the Fuzzy Rule Gen-
eration Algorithm

The overload control of a switching system can be car-
ried out by two functions : overload detcction and control
action. The overload detection procedure is a mapping of
the monitored system parameters to the degree of the
systems load state. The control action is an optimization
procedurc used to achieve thc maximum engincered ihr-
oughput and to determine the control input value against
the degrec of the systems load state. To implement the
overload controller for a switching system, we need to
select the appropriate monitored system parameters, clas-
sify thc adequate degrees of the system load state, and
seek the optimized control function. In doing so, we define
the overload control problem for a switching system as

follows. Let X={(x,, ..., x,) be a set of system param-

eters, Y=1_(y|, ..., ¥m the degrees of the system load
state, U=(zy, ..., u,;) the control input vector, N(X, {/)
the system throughput, and N* the engineered throughput.
Then, the overload detection is ¢o find a relationship
between X and Y, such that rule R,: X—Y, and the
overload control is 1o find a relationship between (X, V)
and U, which can make the system throughput N(X, (/)
approach N*, such that rle £ |N*: (X, N—U.

However, it is not easy to find a relationship between
the observed system paramcters and the referenced load
state, and a relationship between the system load state and
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the control input, since the switching systems behavior is
non-linear and timec-delayed to the input load. Hence, it
is difficult to find a set of systerm parameters which can
reasonably discriminatc the degree of the systems load
statc. Moreover, all the information that can bc obiained
is from mcasured data and knowledge of the switching
operations arc rcpresented by vague descripiions, Therefore,
we propose a fuzzy rule-generation method to find the sct
of system parameters and the relationships from mcasured
data.

Propeniies (features) of the parameters related to the
overfoad control car provide the nccessary entities for pro-
per rule generation. When features are not well defined,
mcthods [2]-(5] for managing the uncerainty inherent in
propertics by means of hicrarchical fuzzy aggregation net-
works have been discussed. In these hierarchical networks,
the inputs to cach node are the degree of satisfaction of
each of the sub-criteria, and che output is the aggregated
degree of satisfaction of the criterion. It has becn shown
that optimization procedures based on gradient descent
can be used t determine the proper type of aggregation
connective and paramcters at cach node, given only an
approximate structurc of the network and given a set of
training data that represent the inputs at the boitom-mast
level and the desired outputs at the top-most level [2)(3).
Also, it has been shown that such networks are capable
of detecting certain types of rcdundant features in a de-
cision-making problem.

If the astributes, properties, and relationships used in
antecedent clauses of rules R, and R» in a switching sys-
tem are tnterpreted as criteria, then onc can model rule-
based load status labeling also as a hierarchical network.
In this paper, we use this idea and the redundancy dete-
ction capability of fuzzy aggregation networks to autom-

atically generate fuzzy rules from measured (training) data.

2.1 Estimation of Membership Functions of
Lingutstic Labels

Let M be the number of outputs and K the number of
inputs. The first step in rule generation is to generate the
membership functions for the various linguistic labels that
each input can take. As shown in [4], the member- ship
functions may be estimated from smoothed histograms of
the input values. Let mij{x,) denote the smoothed hist-
ogram constnicted from output j of input k& We now
present a mcthod to estimate the membership functions
of the linguistic labels for an input.

A suitable parameterized function is chosen to model
the membership function of a linguistic label. Let 4,(x. p)

denote the chosen parameterized function whese p =
(p1, ..., 0, is the paramcter vector. Then each of the
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functions m(x,) can be approximated by a set =
(Rilx, pHi=1,...,L}} of such paramcterized funct-
ions, where L} is the number of parameserized functions
requited for & reasonable approximation of }(x,).

To utilize a flexible function for modeling, we consider
non-symmetric Gaussian function as suitable paramcterized

functions as

Glx,c,00) if x<{c¢
Flx) = n
x,c,) if xzec

where ¢ is the mean value and ¢,{o,) is the left (right)
standard deviation. If a membership function mj(x,)
consists of multiple peaks, we can modcl it as a sum of

such L} asymmetric functions as follows.

)
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is the % parametrized function for feature x, in class j.
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In order to approximatc the smoothed histogram
m’},(xh) for input x, as a sum of pamametmized functions,

we could minimize the following objeclive function
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where #i(x,, p.) denotes the ;¥
Xy D

parametrized function
chosen to model the membership function #2)(x,) for
input x, in class ;. We can now use a gradient descent
mcthod to cstimate the parameter vector pi. by the

following update rule
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where o is a positive leaming constant. The parameter
veetor can be iteratively updated untif there is little or no
change in the parameter values. This occurs when the
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partial derivatives of f} with respect (0 each component
of p), arc approximately equal to zero (ie., when the
chosen apptoximation of paramerrized functions /i (x,, p')
closely matches »23{(x,)). H we use non-symmetric Gaus-
sian functions as out choice for A}(x,, p}). the partial
derivatives of Ji with respect to cach component of
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and
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for 1=1,2.

For gradient descent methods, the choice of the initial
values for the parameters is critical. Therefore, we can
usc a heunstic approach to obtain the initial parameters
for the case of Gaussian functions [5].

2.2 Fuzzy Aggregation Networks for Rule
Generation

The next step is 10 obtain a set of rules which possibly
contain multiple antecedent clauses joincd together either
conjunctive or disjunctively. To achieve this, we usc an
approximate three-layer fuzzy aggregation nctwork which
shown in Fig. 1. From the figure, the bottom layer con-
sists of K groups of modes, with the &% group consisting
of I, nodcs. Each group corresponds (o an input. The
i™ node in the A* group uses #,, (the membership fun-
ction of the i linguistic label for input %) as the activ-
ation function, The middle layer consists of K groups of
M nodes each, where M is thc number of outputs. The
i* node in group 4 in the bottom fayer is connected to

the .rh

nodc in the comresponding grouping the middic
layer if input £ is considered non-redundant for output
and the support of 4, has a non-empty intersection with
the suppott of smi{x,). Similarly, the 7% node of every
group in the middle layer that has a connection from the
bottom layer is comnected to the ;% node of the top layer
for j=1,..., M. All middle and 1op-layer nodes use a
suitable fuzzy aggregation function (such as the gencral-

ized mean) as the activation function.
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Figure 1. An approximmc nctwork structure for gencrating rules.

With this initial approximate aggregation network, train-
ing is initiated. The desired values in the training data arc
chosen to be 1 for the output from which the training
data was cxtracted, and O for the remaining outputs. The
learning is implementcd using a modificd gradicnt descent
method as described in [2)[3). The nodes in the middle
and top layers can represent cither conjunctive or disjun-
ctive nodes depending on the final values of the para-
meters of the aggregation function. Due 0 the constraints
on the weights, some of the weights eventually become
very small, indicating that the corresponding inputs are
redundant. Thus, the raining procedure has the ability to
detect certain types of redundancies. When the training is
complete, the resulting network can be interprewed as a

sct of fuzzy rules.

I1I. Fuzzy Overload Controller for a Switching
System

For an cffective overload controller, it must be able to
provide control inputs in real-time, respond to the short
and long-term overloads properly, and casily be constructed
for various types of switching systems. Therefore, when
selecting the control system parameters or structure of the
overload controller, we consider the simplicity of the con-
trol algorithm and the design flexibility of the controlicr.

The number of offered calls and the occupancy rate
of the processor are the main components of the monit-
ored input veclor X, since these can bc monitored easily
and can represent the overload symptoms prominemtly
relative 1o the queuc length or the response delay time
for a calt sctup [6]. Coupling with the monitored inputs,
we determine the number of admitted calls during the
control unit time as the control input ¥, and sclect the
total number of the completed calls as the system throu-
ghput N.

In order to achieve a ccrain degrec of sensitivity to
the short-term overload and to guarantce control stability,

the concept of call holding time is introduced o select
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an overload detection unit time and the degree of the
systemn load state ts classified into three categorics. Next,
the classification of the system load state is described [7].

3.1 Overload Detection and Classification

We define the different classes of overload using a
throughput curve that is recommended by ITU-T as
shown in Fig. 2. The engineered capacity N* is designed
to operate below the engineered processors occupancy

P.» and the engineercd ratio of number of uncompleted

and offered call, 7, . The tear-down point 4, on the

slope of the offcred load and throughput in Fig. 2 shows
the starting point of deterioration of the system.

number
of calls
With
control
N*
(Pm)
N@n)
Nn-ka(n)f=-==="= i ! without
Nn-3kn(n) P~ 1 i control
ky step

n-3kh/ n kp ko

1 [l
nkh Tl prooverload | overload
state stale state
(class 1} (class 2) (class 3)

Figure 2. Classification regions of the load status.

It is necessary 10 detect this point prior to overload in
order to obtain enough time to control the short and
long-term overloads. Therefore, we define the load status
of the system into three classes: nommal state (class 1),
pre-overload state (class 2), and overload state (class 3)
as shown in Fig. 2. To describe the classes of the systems
state, we consider the time it takes prior t¢ overload.
Since an overload staris after all the resources are
occupied for the calls in scrvice, it is rcasonable to take

the average call holding time ¢, as the reference of the
detection unit time £y,

We now define the three classes of the systeras load
status. Let L be the set of input load trajectories possible
to exist in a switching system such that L = {L,(n). ...,
L.{n)}. A switching system characteristics can be pre-
sented by the set of state trajectories S={S5,(n), ...,
S}, where a point of the state trajectory Sf{») can
be defined by a g-dimensional vector, S,(#) = (f,{4),
... f(R)). The state features are selected among the
switching system parameters or as a combination of ones.

Let {»{1), ..., »i{n)} be the sequence of the ratio
of number of uncompleted and offered calls, and {o,{1),

.., pi{n)} the processors occupancy generated from the

input load trajectory L,(n), respectively. The set of sys-
tem break-down points generated from L (n), K, can
be defined as K= {k} such that »;(k+3), ..., (A
Y Vo Blk=1) <, and plk+y), ..., p, (B o,
0,{k—1) {p,,. The set of overload recovery points gen-
erated from L,(n), K., can be defined as K. = {k}
such that »;(k+x), ..., 7{k<{¥., 7 (k—1)>7, and
plkt Y, ..., 0 (P, 0(k—1)>p, where x y=k,.
Let k&, denote the call holding step time (ie., &, = t,/1,).
Then, the set of averload start points generated from
L,(n), K, can be defincd as K’ = (k) such that &=
ky,—k, and ky,e K}, and the sct of prc-overload start
points generated from L.(n), KL, can be defined as
K, = {k} such that k, = k,—3k, and k| =K. Then,
the load status of a switching system can be classified as
an overload state class C, if

C,= Ql C!, where Ci={S{(AB)|K.<h<K}
and pre-overload state class C, if

Co=\J, 5, where Cy= (S(RIK,<k<K;)
and normal state class C, if

C,|= S—C,,"'Cp.

Using the above definitions, we can formulate the over-

load detection process as a classification problem.

3.2 Fuzzy Load Estimator and Controller

The functionat block diagram of the fuzzy overload
coniroller is shown in Fig. 3. The fuzzy overload con-
troller consists of three basic components . a system ident-
ification block, control wning block, and fuzzy control
block. The system identification and control tuning blocks
are located in the simulation model and are operated in
the off-line wmode, The Ffuzzy control block is coupled
with ¢the real switching system and is designed to react
to the shont-term overload.

Before imaplementing the proposed fuzzy overioad con-
troller, it is required o prepare two sets of training data

for estimating the rules R, and R,. For identifying the

system overload characteristics, the pairs (X, Y) are coll-
ected from the simulation model or the real system. We
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Figure 3. A tunciiona]l block diagram for the fuzzy overload
controller.

choose the number of the offered calls at comtrol unil
time A{#), the accumulated number of the offered calls
tor a mean call holding time A, ,{(n), and the accumul-
ated number of the offered calis for three Omes the
mean call holding time A, 4u(n) as x|, xu, and xy,
respectively. The occupancy rate of the processor at con-
ol unit time p{#), the accumulated occupancy rate of
the processor for a mean call holding time o, (2
and the accumulated occupancy rate of the processor for
three times the mecan cal) holding time A, .,(») are
selected as x;, xg, and xg, respectively. The class of (he
load state is selected as Y. For tuning the control rule
Ry, the pairs of (X, Y, U, N) arc collecied. We choose
the number of allowed calls for next control unit time as

{7 and thc number of completed calls as N

The fuzzy overload controller is organized as follows :

Step 1:By inserting the standard overload input patterns
to a simulation model or a real system, collect
the (x,, ..., xs., Y) training data. Remove the
redundant input components (if any) using red-
undancy detection methods [4]. Estimate the me-
mbership functions of the linguistic labels for the
non-redundant inputs X*. Geoeratc the fuzzy rule
Ry between X and Y, using the fuzzy aggregation
network.

Step 2: As a control law, perform a_no-control_action for
the normal load state and teject the offered calls
for the ovetload state. With the results from step
[, subdivide the pre-overtoad state into ¢ levels
and make various control lookup tables which
consist of algorithms for reducing the rate of the
allowable offered call according to the pre-over-
load levels. Collect the (X*, ¥, U, N} data by
utilizing the standard overload input patterms and
control lookup wbles. Find the control lookup
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table that maximizes the system throughput.

Step 3: Collect the X* data for a control unil time and
determine the systems overload state by using the
fuzzy rule R, and the maximum defuzzification
scheme. Apply the control input that is selected
from the control fookup table.

Step 4. Save the (x;, ..., x;, Y} daa pairs collected
at sample tme ¢ . Update the control lookup

table using steps 1 and 2 in the off-line mode.

IV. Simulation Results

To show the cffectiveness of the proposed fuzzy rule
generation algorithm, we carry out some simulaiions using
a simulation model catled EMS PABX [8]. All simulation
were performed  with the  Distributed  Processor - System
Simulator (DPS%) as described in emore detail in [6). In
the madel, ¢, amd ¢, are chosen to be 10 and 90 scconds,
respectively. Also, r, =003 and p,=0.75. The training
data was collected by simulating 3 types of the inpwt
load trajectorics that can cause an overfoad to the system:
Lty = Nopan, Ll = N(LO—p, ) nf2le)+ N(p,— 0.1},
and [(#) =2N L0 — putnfky 4 Nip, —0.1)

The described simulation may be considered as a
3-outpu/6-input  classification problem. We extracted 50
samples from each owtput for the (raining data and cach
of the six inpws was mapped into the interval [0,1].
Inputs 1, 4, and § were eliminated casily using redund-
ancy detection methods (4]

Fig. 4(a) shows the smoothed histograms for onc of
the (hree non-redundant inputs and Fig. 4(b) shows the
membership  functions of the resulting  Jinguistic  labels
gencrated by fitting non-symmetric Gaussian (o the smoot-
hed histograms. The rtesuliing  approximate network  for
rulc generation and final reduced nctwork after training
ate shown in Fig. 5. Table | shows the final weights and
the parameter p values, The rules obtained from the final

network are listed below.

“— Class 1 = (lass 2 e Class 3
10 LM 1
o Ty
2 3
4 2
2os £
5 i
= £
wok L 4 S
on 05 1o o 02 [ 06 08 (B}
Feature 2 Fealvre 2
(a) (b)

Figure 4. (a) Smoothcd histograms and (b} Gaussian fitied
linguistic labels for feature 2.
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Class | Class 2 Class 3

L M H L M H L M H

Feature 2 Feature 3 Feature 6
" {a)
Class 1 Class 2 Class 3

o] O O

L M H L M H L M H

Feature 2 Feature 3 Feature 6
(b)

Figure 5. {a) Approximate network strucwre for gencrating
nules (b) Reduced network after training.

Table 1. Values of weights and paramcter p for the reduced
network.

node i 2 3 4 5 6 7 8

weights 0.476 0274 1.000 (000 000 1000 (000 100G
0.524 0.726

P -6.021 0.615 1.018 (922 0988 0982 1.006 -1.129

Rule 1:1F ihe sccomulated pumber of offered call (3%,
interval) is LOW AND
accumulated processor occupancy (34, interval)
is LOW
THEN (he class is Normal State.
Rule 2:1F the accumulaled number of offered calls ( %, in-
terval) is MEDIUM AND
accumulated processor occupancy (3%, inierval) is
MEDIUM
THEN the class is Pre-overload State.
Rule 3:1TF the accomulated number of offered calls (3%, in-

terval) is HIGH
THEN the class is Overload State.

The outputs of the rule generation network for each sample
was defuzzified using the maximum-membership defuzzif-
ication scheme. The rate of comect classification resulted

in 92%.
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V. Conclusions

The problem of overload control for a swiltching sys-
tem can be defined as finding a relationship betwecn the
monitored system parameters and the degree of the sys-
tem load state, and also finding a relationship between the
system load status and optimal control input. Due to
non-lineanity and time-varying switching systems internal
behavior, it is difficult 0 find paramcters 10 express the
overload status prominently. Also, it is difficult to extract
overload detection and optimal control rules only with
measured data. To provide a flexible overload controller,
we proposed a fuzzy rule gencration algorithm and a fuzzy
overload controtler. We classified the switching system
load state ino normal, pre-overload, and overload states
and subdivided the pre-overload state into ¢ levels. Fuzzy
relations betwecen monitored system  parameters and  the
degrec of the system fcad state were extracted by using
estimated membership functions and  fuzzy aggregation
networks., The fuzzy averload controller and fuzzy control
block which operates in two phases, was suggested.
Simulation results show that the proposed fuzzy rule ge-
neration algorithm is effective in thc overload detection

and control in switching systems.
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