• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.028 seconds

Universal learning network-based fuzzy control

  • Hirasawa, K.;Wu, R.;Ohbayashi, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.436-439
    • /
    • 1995
  • In this paper we present a method to construct fuzzy model with multi-dimension input membership function, which can construct fuzzy inference system on one node of the network directly. This method comes from a common framework called Universal Learning Network (ULN). The fuzzy model under the framework of ULN is called Universal Learning Network-based Fuzzy Inference System (ULNFIS), which possesses certain advantages over other networks such as neural network. We also introduce how to imitate a real system with ULN and a control scheme using ULNFIS.

  • PDF

The Inference System of Bead Geometry in GMAW (GMA 용접공정의 비드형상 추론기술)

  • Kim, Myun-Hee;Choi, Young-Geun;Shin, Hyeon-Seung;Lee, Moon-Hwan;Lee, Tae-Young;Lee, Sang-Hyoup
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality, Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FLC(fuzzy logic control), The parameters of input membership functions and those of consequence functions in FLC were tuned through the method of learning by backpropagation algorithm, Bead geometry could he reasoned from welding current, arc voltage, travel speed on FLC using the results learned by neural networks. On the developed inference system of bead geometry using neuo-fuzzy algorithm, the inference error percent of bead width was within ${\pm}4%$, that of bead height was within ${\pm}3%$, and that of penetration was within ${\pm}8%$, Neural networks came into effect to find the parameters of input membership functions and those of consequence in FLC. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

  • PDF

Design of Fuzzy Pattern Classifier based on Extreme Learning Machine (Extreme Learning Machine 기반 퍼지 패턴 분류기 설계)

  • Ahn, Tae-Chon;Roh, Sok-Beom;Hwang, Kuk-Yeon;Wang, Jihong;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.509-514
    • /
    • 2015
  • In this paper, we introduce a new pattern classifier which is based on the learning algorithm of Extreme Learning Machine the sort of artificial neural networks and fuzzy set theory which is well known as being robust to noise. The learning algorithm used in Extreme Learning Machine is faster than the conventional artificial neural networks. The key advantage of Extreme Learning Machine is the generalization ability for regression problem and classification problem. In order to evaluate the classification ability of the proposed pattern classifier, we make experiments with several machine learning data sets.

Formulation of the Neural Network for Implicit Constitutive Model (II) : Application to Inelastic Constitutive Equations

  • Lee, Joon-Seong;Lee, Eun-Chul;Furukawa, Tomonari
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.264-269
    • /
    • 2008
  • In this paper, two neural networks as a material model, which are based on the state-space method, have been proposed. One outputs the rates of inelastic strain and material internal variables whereas the outputs of the other are the next state of the inelastic strain and material internal variables. Both the neural networks were trained using input-output data generated from Chaboche's model and successfully converged. The former neural network could reproduce the original stress-strain curve. The neural network also demonstrated its ability of interpolation by generating untrained curve. It was also found that the neural network can extrapolate in close proximity to the training data.

A New Augmented Lyapunov Functional Approach to Robust Stability Criteria for Uncertain Fuzzy Neural Networks with Time-varying Delays (시변 지연이 존재하는 불확실 퍼지 뉴럴 네트워크의 강인 안정성 판별법에 대한 새로운 리아프노프 함수법)

  • Kwon, Oh-Min;Park, Myeong-Jin;Park, Ju-Hyun;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2119-2130
    • /
    • 2011
  • This paper proposes new delay-dependent robust stability criteria for neural networks with time-varying delays. By construction of a suitable Lyapunov-Krasovskii's (L-K) functional and use of Finsler's lemma, new stability criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.

Face Recognition using Eigenfaces and Fuzzy Neural Networks (고유 얼굴과 퍼지 신경망을 이용한 얼굴 인식 기법)

  • 김재협;문영식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • Detection and recognition of human faces in images can be considered as an important aspect for applications that involve interaction between human and computer. In this paper, we propose a face recognition method using eigenfaces and fuzzy neural networks. The Principal Components Analysis (PCA) is one of the most successful technique that have been used to recognize faces in images. In this technique the eigenvectors (eigenfaces) and eigenvalues of an image is extracted from a covariance matrix which is constructed form image database. Face recognition is Performed by projecting an unknown image into the subspace spanned by the eigenfaces and by comparing its position in the face space with the positions of known indivisuals. Based on this technique, we propose a new algorithm for face recognition consisting of 5 steps including preprocessing, eigenfaces generation, design of fuzzy membership function, training of neural network, and recognition. First, each face image in the face database is preprocessed and eigenfaces are created. Fuzzy membership degrees are assigned to 135 eigenface weights, and these membership degrees are then inputted to a neural network to be trained. After training, the output value of the neural network is intupreted as the degree of face closeness to each face in the training database.

Fuzzy System and Knowledge Information for Stock-Index Prediction

  • Kim, Hae-Gyun;Bae, Hyeon;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.172.6-172
    • /
    • 2001
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock, or other economic markets. Most previous experiments used multilayer perceptrons(MLP) for stock market forecasting, The Kospi 200 Index is modeled using different neural networks and fuzzy system predictions. In this paper, a multilayer perceptron architecture, a dynamic polynomial neural network(DPNN) and a fuzzy system are used to predict the Kospi 200 index. The results of prediction is compared with the root mean squared error(RMSE) and the scatter plot. The results show that the fuzzy system is performing slightly better than DPNN and MLP. We can develop the desired fuzzy system by learning methods ...

  • PDF

Concentration estimation of gas mixtures using a tin oxide gas sensor and fuzzy ART (반도체식 가스센서와 퍼지 ART를 이용한 혼합가스의 농도 추정)

  • Lee Jeong-Hun;Cho Jung-Hwan;Jeon Gi-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.21-29
    • /
    • 2006
  • A fuzzy ARTMAP neural network and a fuzzy ART neural network are proposed to identify $H_2S,\;NH_3$, and their mixtures and to estimate their concentrations, respectively. Features are extracted from a tin oxide gas sensor operated in a thermal modulation plan. After dimensions of the features are reduced by a preprocessing scheme, the features are fed into the proposed fuzzy neural networks. By computer simulations, the proposed method is shown to be fast in learning and stable in concentration estimating compared with other methods.

Fuzzy Neural Networks-Based Call Admission Control Using Possibility Distribution of Handoff Calls Dropping Rate for Wireless Networks (핸드오프 호 손실율 가능성 분포에 의한 무선망의 퍼지 신경망 호 수락제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.901-906
    • /
    • 2009
  • This paper proposes a call admission control(CAC) method for wireless networks, which is based on the upper bound of a possibility distribution of handoff calls dropping rates. The possibility distribution is estimated in a fuzzy inference and a learning algorithm in neural network. The learning algorithm is considered for tuning the membership functions(then parts)of fuzzy rules for the inference. The fuzzy inference method is based on a weighted average of fuzzy sets. The proposed method can avoid estimating excessively large handoff calls dropping rates, and makes possibile self-compensation in real time for the case where the estimated values are smaller than real values. So this method makes secure CAC, thereby guaranteeing the allowed CDR. From simulation studies we show that the estimation performance for the upper bound of call dropping rate is good, and then handoff call dropping rates in CAC are able to be sustained below user's desired value.

  • PDF

Fuzzy Hint Acquisition for the Collision Avoidance Solution of Redundant Manipulators Using Neural Network

  • Assal Samy F. M.;Watanabe Keigo;Izumi Kiyotaka
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.17-29
    • /
    • 2006
  • A novel inverse kinematics solution based on the back propagation neural network (NN) for redundant manipulators is developed for online obstacles avoidance. A laser transducer at the end-effctor is used for online planning the trajectory. Since the inverse kinematics in the present problem has infinite number of joint angle vectors, a fuzzy reasoning system is designed to generate an approximate value for that vector. This vector is fed into the NN as a hint input vector rather than as a training vector to guide the output of the NN. Simulations are implemented on both three- and four-link redundant planar manipulators to show the effectiveness of the proposed position control system.