• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.026 seconds

CELL STATE SPACE ALGORITHM AND NEURAL NETWORK BASED FUZZY LOGIC CONTROLLER DESIGN

  • Aao;Ding, Gen-Ya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.972-974
    • /
    • 1993
  • This paper presents a new method to automatically design fuzzy logic controller(FLC). The main problems of designing FLC are how to optimally and automatically select the control rules and the parameters of membership function (MF). Cell state space algorithms (CSS), differential competitive learning (DCL) and multialyer neural network are combined in this paper to solve the problems. When the dynamical model of a control process is known. CSS can be used to generate a group of optimal input output pairs(X, Y) used by a controller. The(X, Y) then can be used to determine the FLC rules by DCL and to determine the optimal parameters of MF by DCL and to determine the optimal parameters of MF by multilayer neural network trained by BP algorithm.

  • PDF

Compensation of a Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Park, Chiyeon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.182-186
    • /
    • 2004
  • This paper describes an advanced compensation for non-linear functions designed to remove steering aberrations from phased array antennas. This system alters the steering command applied to the antenna in a way that the appropriate angle commands are given to the array steering software for the antenna to point to the desired position instead of squinting. Artificial neural networks are used to develop the inverse function necessary to correct the aberration. Also a straightforward antenna steering function is implemented with neural networks for the 9-term polynomials of forward steering function. In all cases the aberration is removed resulting in small RMS angular errors across the operational angle space when the actual antenna position is compared with the desired position. The use of neural network model provides a method of producing a non-linear system that can correct antenna performance and demonstrates the feasibility of generating an inverse steering algorithm.

Experimental Studies of Swing Up and Balancing Control of an Inverted Pendulum System Using Intelligent Algorithms Aimed at Advanced Control Education

  • Ahn, Jaekook;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents the control of an inverted pendulum system using intelligent algorithms, such as fuzzy logic and neural networks, for advanced control education. The swing up balancing control of the inverted pendulum system was performed using fuzzy logic. Because the switching time from swing to standing motion is important for successful balancing, the fuzzy control method was employed to regulate the energy associated with the angular velocity required for the pendulum to be in an upright position. When the inverted pendulum arrived within a range of angles found experimentally, the control was switched from fuzzy to proportional-integral-derivative control to balance the inverted pendulum. When the pendulum was balancing, a joystick was used to command the desired position for the pendulum to follow. Experimental results demonstrated the performance of the two intelligent control methods.

Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation (정보 입자화를 통한 방사형 기저 함수 기반 다항식 신경 회로망의 진화론적 설계)

  • Park, Ho-Sung;Jin, Yong-Ha;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.862-870
    • /
    • 2011
  • In this paper, we introduce a new topology of Radial Basis Function-based Polynomial Neural Networks (RPNN) that is based on a genetically optimized multi-layer perceptron with Radial Polynomial Neurons (RPNs). This study offers a comprehensive design methodology involving mechanisms of optimization algorithms, especially Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization (PSO) algorithms. In contrast to the typical architectures encountered in Polynomial Neural Networks (PNNs), our main objective is to develop a design strategy of RPNNs as follows : (a) The architecture of the proposed network consists of Radial Polynomial Neurons (RPNs). In here, the RPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Fuzzy C-Means (FCM) clustering method. The RPN dwells on the concepts of a collection of radial basis function and the function-based nonlinear (polynomial) processing. (b) The PSO-based design procedure being applied at each layer of RPNN leads to the selection of preferred nodes of the network (RPNs) whose local characteristics (such as the number of input variables, a collection of the specific subset of input variables, the order of the polynomial, and the number of clusters as well as a fuzzification coefficient in the FCM clustering) can be easily adjusted. The performance of the RPNN is quantified through the experimentation where we use a number of modeling benchmarks - NOx emission process data of gas turbine power plant and learning machine data(Automobile Miles Per Gallon Data) already experimented with in fuzzy or neurofuzzy modeling. A comparative analysis reveals that the proposed RPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

Recognition of the Passport by Using Fuzzy Binarization and Enhanced Fuzzy Neural Networks

  • Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.603-607
    • /
    • 2003
  • The judgment of forged passports plays an important role in the immigration control system, for which the automatic and accurate processing is required because of the rapid increase of travelers. So, as the preprocessing phase for the judgment of forged passports, this paper proposed the novel method for the recognition of passport based on the fuzzy binarization and the fuzzy RBF neural network newly proposed. first, for the extraction of individual codes being recognized, the paper extracts code sequence blocks including individual codes by applying the Sobel masking, the horizontal smearing and the contour tracking algorithm in turn to the passport image, binarizes the extracted blocks by using the fuzzy binarization based on the membership function of trapezoid type, and, as the last step, recovers and extracts individual codes from the binarized areas by applying the CDM masking and the vertical smearing. Next, the paper proposed the enhanced fuzzy RBF neural network that adapts the enhanced fuzzy ART network to the middle layer and applied to the recognition of individual codes. The results of the experiment for performance evaluation on the real passport images showed that the proposed method in the paper has the improved performance in the recognition of passport.

  • PDF

Minimum Fuzzy Membership Function Extraction for Automatic Premature Ventricular Contraction Detection (자동 조기심실수축 탐지를 위한 최소 퍼지소속함수의 추출)

  • Lim, Joon-Shik
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.125-132
    • /
    • 2007
  • This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM), NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The eight most important coefficients of d3 and d4 are selected by the non-overlap area distribution measurement method. The selected 8 coefficients are used for 3 data sets showing reliable accuracy rates 99,80%, 99,21%, and 98.78%, respectively, which means the selected input features are less dependent to the data sets. The ECG signal segments and fuzzy membership functions of the 8 coefficients enable input features to interpret explicitly.

  • PDF

Development of warning algorithm for intelligent vehicle collision warning system (지능형 차량 추돌 경보 시스템의 경보 알고리즘 개발)

  • Han, Hyung-Seok;Kim, Myung-Soo;Lee, Eun-Gyung;Lee, Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.656-659
    • /
    • 1997
  • In order to improve vehicle safety, collision warning systems have been proposed by many researchers. This paper presents several algorithms to determine the degree of real end collision by using fuzzy logic and neural networks. In order to provide realistic data for the algorithm design, a data collection system has been installed on a passenger car.

  • PDF

The Design of Granular-based Radial Basis Function Neural Network by Context-based Clustering (Context-based 클러스터링에 의한 Granular-based RBF NN의 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1230-1237
    • /
    • 2009
  • In this paper, we develop a design methodology of Granular-based Radial Basis Function Neural Networks(GRBFNN) by context-based clustering. In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The output space is granulated making use of the K-Means clustering while the input space is clustered with the aid of a so-called context-based fuzzy clustering. The number of information granules produced for each context is adjusted so that we satisfy a certain reconstructability criterion that helps us minimize an error between the original data and the ones resulting from their reconstruction involving prototypes of the clusters and the corresponding membership values. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the values of the context and the prototypes in the input space. The other parameters of these local functions are subject to further parametric optimization. Numeric examples involve some low dimensional synthetic data and selected data coming from the Machine Learning repository.

Estimation of LOCA Break Size Using Cascaded Fuzzy Neural Networks

  • Choi, Geon Pil;Yoo, Kwae Hwan;Back, Ju Hyun;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.495-503
    • /
    • 2017
  • Operators of nuclear power plants may not be equipped with sufficient information during a loss-of-coolant accident (LOCA), which can be fatal, or they may not have sufficient time to analyze the information they do have, even if this information is adequate. It is not easy to predict the progression of LOCAs in nuclear power plants. Therefore, accurate information on the LOCA break position and size should be provided to efficiently manage the accident. In this paper, the LOCA break size is predicted using a cascaded fuzzy neural network (CFNN) model. The input data of the CFNN model are the time-integrated values of each measurement signal for an initial short-time interval after a reactor scram. The training of the CFNN model is accomplished by a hybrid method combined with a genetic algorithm and a least squares method. As a result, LOCA break size is estimated exactly by the proposed CFNN model.

Development of Photovoltaic Output Power Prediction System using OR-AND Structured Fuzzy Neural Networks (OR-AND 구조의 퍼지 뉴럴 네트워크를 이용한 태양광 발전 출력 예측 시스템 개발)

  • Kim, Haemaro;Han, Chang-Wook;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.334-337
    • /
    • 2019
  • In response to the increasing demand for energy, research and development of next-generation energy is actively carried out around the world to replace fossil fuels. Among them, the specific gravity of solar power generation systems using infinity and pollution-free solar energy is increasing. However, solar power generation is so different from solar energy that it is difficult to provide stable power and the power production itself depends on the solar energy by region. To solve these problems in this paper, we have collected meteorological data such as actual regional solar irradiance, precipitation, temperature and humidity, and proposed a solar power output prediction system using logic-based fuzzy Neural Network.