• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.03 seconds

Real-Time Control for Autonomous Cruise of Mobile Robot Using Fuzzy Neural Network (퍼지신경망을 이용한 자율주행 이동로봇의 실시간 제어)

  • 정동연;이우송;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1697-1700
    • /
    • 2003
  • We propose a new technique for real-time controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

  • PDF

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (이동로봇의 자율주행을 위한 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.312-318
    • /
    • 2003
  • We propose a new technique for the cruise control system design of a mobile robot with three drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized teaming architecture. It is proposed a learning controller consisting of too neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by three independent wheels.

  • PDF

Intelligent Control of Mobile robot Using Fuzzy Neural Network Control Method (퍼지-신경망 제어기법을 이용한 Mobile Robot의 지능제어)

  • 정동연;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by two independent wheels.

  • PDF

An Intelligent Control of TRack Vehicle Using Fuzzy-Neural Network Control Method (퍼지-신경회로망 제어기법에 의한 궤도차량의 지능제어)

  • 신행봉;김용태;조길수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.210-215
    • /
    • 1999
  • In this paper, a new approach to the dynamic control technique for track vehicle system using fuzzy-neural network control technique is proposed. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

Development of Inference Algorithm for Bead Geometry in GMAW (GMA 용접의 비드형상 추론 알고리즘 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.132-139
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks. On the developed inference system of bead geometry using neuro-furzy algorithm, the inference error percent of bead width was within $\pm$4%, that of bead height was within $\pm$3%, and that of penetration was within $\pm$8%. Neural networks came into effect to find the parameters of input membership functions and those of consequence in FL. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

Estimation of the Nuclear Power Peaking Factor Using In-core Sensor Signals

  • Na, Man-Gyun;Jung, Dong-Won;Shin, Sun-Ho;Lee, Ki-Bog;Lee, Yoon-Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.420-429
    • /
    • 2004
  • The local power density should be estimated accurately to prevent fuel rod melting. The local power density at the hottest part of a hot fuel rod, which is described by the power peaking factor, is more important information than the local power density at any other position in a reactor core. Therefore, in this work, the power peaking factor, which is defined as the highest local power density to the average power density in a reactor core, is estimated by fuzzy neural networks using numerous measured signals of the reactor coolant system. The fuzzy neural networks are trained using a training data set and are verified with another test data set. They are then applied to the first fuel cycle of Yonggwang nuclear power plant unit 3. The estimation accuracy of the power peaking factor is 0.45% based on the relative $2_{\sigma}$ error by using the fuzzy neural networks without the in-core neutron flux sensors signals input. A value of 0.23% is obtained with the in-core neutron flux sensors signals, which is sufficiently accurate for use in local power density monitoring.

Design of ECG Pattern Classification System Using Fuzzy-Neural Network (퍼지-뉴럴 네트워크를 이용한 심전도 패턴 분류시스템 설계)

  • 김민수;이승로;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.273-276
    • /
    • 2002
  • This paper has design of ECG pattern classification system using decision of fuzzy IF-THEN rules and neural network. each fuzzy IF-THEN rule in our classification system has antecedent lingustic values and a single consequent class. we use a fuzzy reasoning method based on a single winner rule in the classification phase. this paper in, the MIT/BIH arrhythmia database for the source of input signal is used in order to evaluate the performance of the proposed system. From the simulation results, we can effectively pattern classification by application of learned from neural networks.

  • PDF

Finding Fuzzy Rules for IRIS by Neural Network with Weighted Fuzzy Membership Function

  • Lim, Joon Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.211-216
    • /
    • 2004
  • Fuzzy neural networks have been successfully applied to analyze/generate predictive rules for medical or diagnostic data. However, most approaches proposed so far have not considered the weights for the membership functions much. This paper presents a neural network with weighted fuzzy membership functions. In our approach, the membership functions can capture the concentrated and essential information that affects the classification of the input patterns. To verify the performance of the proposed model, well-known Iris data set is performed. According to the results, the weighted membership functions enhance the prediction accuracy. The architecture of the proposed neural network with weighted fuzzy membership functions and the details of experimental results for the data set is discussed in this paper.

Genetic Optimization of Fuzzy C-Means Clustering-Based Fuzzy Neural Networks (FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.466-472
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based fuzzy neural networks (FCM-FNN) and the optimization of the network is carried out by means of hierarchal fair competition-based parallel genetic algorithm (HFCPGA). FCM-FNN is the extended architecture of Radial Basis Function Neural Network (RBFNN). FCM algorithm is used to determine centers and widths of RBFs. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM-FNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Since the performance of FCM-FNN is affected by some parameters of FCM-FNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the HFCPGA which is a kind of multipopulation-based parallel genetic algorithms(PGA) is exploited to carry out the structural optimization of FCM-FNN. Moreover the HFCPGA is taken into consideration to avoid a premature convergence related to the optimization problems. The proposed model is demonstrated with the use of two representative numerical examples.

Reactor Vessel Water Level Estimation During Severe Accidents Using Cascaded Fuzzy Neural Networks

  • Kim, Dong Yeong;Yoo, Kwae Hwan;Choi, Geon Pil;Back, Ju Hyun;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.702-710
    • /
    • 2016
  • Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.