• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.764 seconds

MTPA Control of Induction Motor Drive using Fuzzy-Neural Networks Controller (퍼지-신경회로망 제어기를 이용한 유도전동기의 최대토크 제어)

  • Lee, Hong-Gyun;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.20-22
    • /
    • 2005
  • In this paper, we propose fuzzy-neural network controller that combines a fuzzy control and the Neural Networks for high performance control of induction motor drive, Also, this paper is proposed control of maximum torque per ampere of induction motor. This strategy is proposed which is simple in structure and has the honest goal of minimizing the stator current magnitude for given load torque. The performance of the proposed induction motor drive with maximum torque control using fuzzy-neural network controller is verified by simulation at dynamic operation conditions.

  • PDF

Intelligent Control of Redundant Manipulator in an Environment with Obstacles (장애물이 있는 환경하에서 여유자유도 로보트의 지능제어 방법)

  • 현웅근;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.551-561
    • /
    • 1992
  • A neural optimization network and fuzzy rules are proposed to control the redundant robot manipulators in an environment with obstacle. A neural optimization network is employed to solve the optimization problem for resolved motion control of redundant robot manipulators in an environment with obstacle. The fuzzy rules are proposed to determine the weights of neural optimization networks to avoid the collision between robot manipulators and obstacle. The inputs of fuzzy rules are the resultant distance and change of the distance and sum of the changes by differential motion of each joint. And the output of fuzzy rules is defined as the capability of collision avoidance of joint differential motion. The weightings of neural optimization networks are adjusted according to the capability of collision aboidance of each joint. To show the validities of the proposed method, computer simulation results are illustrated for the redundant robot of the planar type with three degrees of freedom.

Fuzzy and Polynomial Neuron Based Novel Dynamic Perceptron Architecture (퍼지 및 다항식 뉴론에 기반한 새로운 동적퍼셉트론 구조)

  • Kim, Dong-Won;Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2762-2764
    • /
    • 2001
  • In this study, we introduce and investigate a class of dynamic perceptron architectures, discuss a comprehensive design methodology and carry out a series of numeric experiments. The proposed dynamic perceptron architectures are called as Polynomial Neural Networks(PNN). PNN is a flexible neural architecture whose topology is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but is generated on the fly. In this sense, PNN is a self-organizing network. PNN has two kinds of networks, Polynomial Neuron(FPN)-based and Fuzzy Polynomial Neuron(FPN)-based networks, according to a polynomial structure. The essence of the design procedure of PN-based Self-organizing Polynomial Neural Networks(SOPNN) dwells on the Group Method of Data Handling (GMDH) [1]. Each node of the SOPNN exhibits a high level of flexibility and realizes a polynomial type of mapping (linear, quadratic, and cubic) between input and output variables. FPN-based SOPNN dwells on the ideas of fuzzy rule-based computing and neural networks. Simulations involve a series of synthetic as well as experimental data used across various neurofuzzy systems. A detailed comparative analysis is included as well.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of Fuzzy ART Neural Networks

  • Seo, Kwang-Kyu;Park, Ji-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2137-2147
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end-of-life phase. Disposal products have the uncertainties of product status by usage influences during product use phase, and recycling cells are formed design, process and usage attributes. In order to deal with the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. Fuzzy C-mean algorithm and a heuristic approach based on fuzzy ART neural network is suggested. Especially, the modified Fuzzy ART neural network is shown that it has a good clustering results and gives an extension for systematically generating alternative solutions in the recycling cell formation problem. Disposal refrigerators are shown as examples.

The Neural-Fuzzy Control of a Transformer Cooling System

  • Lee, Jong-Yong;Lee, Chul
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2016
  • In transformer cooling systems, oil temperature is controlled through the use of a blower and oil pump. For this paper, set-point algorithms, a reset algorithm and control algorithms of the cooling system were developed by neural networks and fuzzy logics. The oil inlet temperature was set by a $2{\times}2{\times}1$ neural network, and the oil temperature difference was set by a $2{\times}3{\times}1$ neural network. Inputs used for these neural networks were the transformer operating ratio and the air inlet temperature. The inlet set temperature was reset by a fuzzy logic based on the transformer operating ratio and the oil outlet temperature. A blower was used to control the inlet oil temperature while the oil pump was used to control the oil temperature difference by fuzzy logics. In order to analysis the performance of these algorithms, the initial start-up test and the step change test were performed by using the dynamic model of a transformer cooling system. Test results showed that algorithms developed for this study were effective in controlling the oil temperature of a transformer cooling system.

Output Power Prediction of Combined Cycle Power Plant using Logic-based Tree Structured Fuzzy Neural Networks (로직에 기반 한 트리 구조의 퍼지 뉴럴 네트워크를 이용한 복합 화력 발전소의 출력 예측)

  • Han, Chang-Wook;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.529-533
    • /
    • 2019
  • Combined cycle power plants are often used to produce power. These days prediction of power plant output based on operating parameters is a major concern. This paper presents an approach to using computational intelligence technique to predict the output power of combined cycle power plant. Computational intelligence techniques have been developed and applied to many real world problems. In this paper, tree architectures of fuzzy neural networks are considered to predict the output power. Tree architectures of fuzzy neural networks have an advantage of reducing the number of rules by selecting fuzzy neurons as nodes and relevant inputs as leaves optimally. For the optimization of the networks, two-step optimization method is used. Genetic algorithms optimize the binary structure of the networks by selecting the nodes and leaves as binary, and followed by random signal-based learning further refines the optimized binary connections in the unit interval. To verify the effectiveness of the proposed method, combined cycle power plant dataset obtained from the UCI Machine Learning Repository Database is considered.

Evolutionally optimized Fuzzy Polynomial Neural Networks Based on Fuzzy Relation and Genetic Algorithms: Analysis and Design (퍼지관계와 유전자 알고리즘에 기반한 진화론적 최적 퍼지다항식 뉴럴네트워크: 해석과 설계)

  • Park, Byoung-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.236-244
    • /
    • 2005
  • In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks(FPNN) that is based on fuzzy relation and evolutionally optimized Multi-Layer Perceptron, discuss a comprehensive design methodology and carry out a series of numeric experiments. The construction of the evolutionally optimized FPNN(EFPNN) exploits fundamental technologies of Computational Intelligence. The architecture of the resulting EFPNN results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks(PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the EFPNN. The consequence part of the EFPNN is designed using PNN. As the consequence part of the EFPNN, the development of the genetically optimized PNN(gPNN) dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the EFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed EFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

Intelligent control system design of track vehicle based-on fuzzy logic (퍼지 로직에 의한 궤도차량의 지능제어시스템 설계)

  • 김종수;한성현;조길수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-134
    • /
    • 1997
  • This paper presents a new approach to the design of intelligent control system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

A Construction of Fuzzy Inference Network based on Neural Logic Network and its Search Strategy

  • Lee, Mal-rey
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.375-389
    • /
    • 2000
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule- inference. network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search costs for searching sequentially and searching by means of search priorities.

  • PDF

A Comparative Study on the Prediction of KOSPI 200 Using Intelligent Approaches

  • Bae, Hyeon;Kim, Sung-Shin;Kim, Hae-Gyun;Woo, Kwang-Bang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock or other economic markets. Most previous experiments used the neural network models for the stock market forecasting. The KOSPI 200 (Korea Composite Stock Price Index 200) is modeled by using different neural networks and fuzzy logic. In this paper, the neural network, the dynamic polynomial neural network (DPNN) and the fuzzy logic employed for the prediction of the KOSPI 200. The prediction results are compared by the root mean squared error (RMSE) and scatter plot, respectively. The results show that the performance of the fuzzy system is little bit worse than that of the DPNN but better than that of the neural network. We can develop the desired fuzzy system by optimization methods.