• 제목/요약/키워드: fuzzy-c means

Search Result 449, Processing Time 0.027 seconds

Web Log Analysis Technique using Fuzzy C-Means Clustering (Fuzzy C-Means클러스터링을 이용한 웹 로그 분석기법)

  • 김미라;곽미라;조동섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.550-552
    • /
    • 2002
  • 플러스터링이란 주어진 데이터 집합의 패턴들을 비슷한 성실을 가지는 그룹으로 나누어 패턴 상호간의 관계를 정립하기 위한 방법론으로, 지금가지 이를 위한 많은 알고리즘들이 개발되어 왔으며, 패턴인식, 영상 처리 등의 여러 공학 분야에 널리 적용되고 있다. FCM(Fuzzy C-Means) 알고리즘은 최소자승 기준함수(least square criterion function)에 퍼지이론을 적용만 목적함수의 반복최적화(iterative optimization)에 기반을 둔 방식으로, 하드 분할에 의한 기존의 클러스터링 방법이 승자(winner take all) 형태의 방법론을 취하는데 비하여, 각 패턴이 특정 클러스터에 속하는 소속정도를 줌으로써 보다 정확한 정보를 형성하도록 도와준다. 본 논문에서는 FCM 기법을 이용한 웹로그 분석을 하고자 한다.

  • PDF

A Simulation Study on The Behavior Analysis of The Degree of Membership in Fuzzy c-means Method

  • Okazaki, Takeo;Aibara, Ukyo;Setiyani, Lina
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.209-215
    • /
    • 2015
  • Fuzzy c-means method is typical soft clustering, and requires a degree of membership that indicates the degree of belonging to each cluster at the time of clustering. Parameter values greater than 1 and less than 2 have been used by convention. According to the proposed data-generation scheme and the simulation results, some behaviors in the degree of "fuzziness" was derived.

Development of Auto-Parts Measuring System Using Fuzzy C-Means Algorithm (Fuzzy C-Means 알고리듬을 이용한 자동차 부품의 측정시스템 개발)

  • 김석현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.129-136
    • /
    • 1998
  • 자동차 부품의 측정 시스템은 현재 고가의 장비가 대부분이다. 본 논문에서는 저가의 장비를 구현하려고 하였다. 자동차의 부품은 여러 가지가 있으나, 이 중에서 현재 공장에서 측정에 어려움을 겪고 있는 에어콘 스윗치인 마그네트코일 하우징을 대상으로 하였다. 특히 측정 대상이 크고, 카메라의 화소수가 40만 이하일 경우, 측정의 중요한 포인트는 화소수이기 때문에 이를 정확히 알아 내는데, Fuzzy C-Means 알고리듬을 수정하여 사용하였다. 길이를 측정하기 위해서는 표준이 되는 정확한 자가 필요하지만 실재로는 획득하기 용이 하지 않고 때문에 이미 공장에서 수작업하여 얻은 합격 제품의 화소수들의 평균치를 표준값으로 하고 이를 표준 길이로 하였다. 결과를 모니터에 보여주고, RSC-232 포트를 통하여 신호를 마이크로프로세서에 전달하여 제품의 양호(good), 불량(bad)을 판별하는 신호를 발생하게 하였다.

  • PDF

Development of Electronic Tongue System Using Fuzzy C-Means Algorithm Combined to PCA Method (PCA와 결합된 Fuzzy C-Means 알고리즘을 이용한 전자 혀 시스템 개발)

  • Jung Woo Suk;Hong Chul Ho;Kim Jeong Do
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.109-116
    • /
    • 2005
  • In this paper, we investigate the visual and quantitative analysis at the same time with an electronic tongue(e-tongue) system using an array of ISE(ion-selective electrode). We apply the FCM(fuzzy c-means) algorithm combined with PCA(principal component analysis), which can be reduced multi-dimensional data to third-dimensional data, to classify data patterns detected by E-Tongue system. The proposed technique can be designed to solve the cluster centers and membership grade of patterns combined with the output results obtained by PCA method. According to the proposed technique, the membership grade of unknown pattern, which does not shown previously can be determined and analyzed visually. Conclusionally, the relationship between the standard patterns and unknown pattern can be easily analyzed. Throughout the experimental trials, the proposed technique has been confirmed using developed E-Tongue system.

PSO-optimized Pareto and Nash equilibrium gaming-based power allocation technique for multistatic radar network

  • Harikala, Thoka;Narayana, Ravinutala Satya
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • At present, multiple input multiple output radars offer accurate target detection and better target parameter estimation with higher resolution in high-speed wireless communication systems. This study focuses primarily on power allocation to improve the performance of radars owing to the sparsity of targets in the spatial velocity domain. First, the radars are clustered using the kernel fuzzy C-means algorithm. Next, cooperative and noncooperative clusters are extracted based on the distance measured using the kernel fuzzy C-means algorithm. The power is allocated to cooperative clusters using the Pareto optimality particle swarm optimization algorithm. In addition, the Nash equilibrium particle swarm optimization algorithm is used for allocating power in the noncooperative clusters. The process of allocating power to cooperative and noncooperative clusters reduces the overall transmission power of the radars. In the experimental section, the proposed method obtained the power consumption of 0.014 to 0.0119 at K = 2, M = 3 and K = 2, M = 3, which is better compared to the existing methodologies-generalized Nash game and cooperative and noncooperative game theory.

Design of Modeling & Simulator for ASP Realized with the Aid of Polynomiai Radial Basis Function Neural Networks (다항식 방사형기저함수 신경회로망을 이용한 ASP 모델링 및 시뮬레이터 설계)

  • Kim, Hyun-Ki;Lee, Seung-Joo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.554-561
    • /
    • 2013
  • In this paper, we introduce a modeling and a process simulator developed with the aid of pRBFNNs for activated sludge process in the sewage treatment system. Activated sludge process(ASP) of sewage treatment system facilities is a process that handles biological treatment reaction and is a very complex system with non-linear characteristics. In this paper, we carry out modeling by using essential ASP factors such as water effluent quality, the manipulated value of various pumps, and water inflow quality, and so on. Intelligent algorithms used for constructing process simulator are developed by considering multi-output polynomial radial basis function Neural Networks(pRBFNNs) as well as Fuzzy C-Means clustering and Particle Swarm Optimization. Here, the apexes of the antecedent gaussian functions of fuzzy rules are decided by C-means clustering algorithm and the apexes of the consequent part of fuzzy rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The coefficients of the consequent polynomial of fuzzy rules and performance index are considered by the Least Square Estimation and Mean Squared Error. The descriptions of developed process simulator architecture and ensuing operation method are handled.

Optimization of Fuzzy Set-Fuzzy Systems based on IG by Means of GAs with Successive Tuning Method

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • We introduce an optimization of fuzzy set-fuzzy systems based on IG (Information Granules). The proposed fuzzy model implements system structure and parameter identification by means of IG and GAs. The concept of information granulation was coped with to enhance the abilities of structural optimization of the fuzzy model. Granulation of information realized with C-Means clustering helps determine the initial parameters of the fuzzy model such as the initial apexes of the membership functions in the premise part and the initial values of polynomial functions in the consequence part of the fuzzy rules. The initial parameters are adjusted effectively with the help of the GAs and the standard least square method. To optimally identify the structure and the parameters of the fuzzy model we exploit GAs with successive tuning method to simultaneously search the structure and the parameters within one individual. We also consider the variant generation-based evolution to adjust the rate of identification of the structure and the parameters in successive tuning method. The proposed model is evaluated with the performance of the conventional fuzzy model.

Problems in Fuzzy c-means and Its Possible Solutions (Fuzzy c-means의 문제점 및 해결 방안)

  • Heo, Gyeong-Yong;Seo, Jin-Seok;Lee, Im-Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • Clustering is one of the well-known unsupervised learning methods, in which a data set is grouped into some number of homogeneous clusters. There are numerous clustering algorithms available and they have been used in various applications. Fuzzy c-means (FCM), the most well-known partitional clustering algorithm, was established in 1970's and still in use. However, there are some unsolved problems in FCM and variants of FCM are still under development. In this paper, the problems in FCM are first explained and the available solutions are investigated, which is aimed to give researchers some possible ways of future research. Most of the FCM variants try to solve the problems using domain knowledge specific to a given problem. However, in this paper, we try to give general solutions without using any domain knowledge. Although there are more things left than discovered, this paper may be a good starting point for researchers newly entered into a clustering area.

Initialization of Fuzzy C-Means Using Kernel Density Estimation (커널 밀도 추정을 이용한 Fuzzy C-Means의 초기화)

  • Heo, Gyeong-Yong;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1659-1664
    • /
    • 2011
  • Fuzzy C-Means (FCM) is one of the most widely used clustering algorithms and has been used in many applications successfully. However, FCM has some shortcomings and initial prototype selection is one of them. As FCM is only guaranteed to converge on a local optimum, different initial prototype results in different clustering. Therefore, much care should be given to the selection of initial prototype. In this paper, a new initialization method for FCM using kernel density estimation (KDE) is proposed to resolve the initialization problem. KDE can be used to estimate non-parametric data distribution and is useful in estimating local density. After KDE, in the proposed method, one initial point is placed at the most dense region and the density of that region is reduced. By iterating the process, initial prototype can be obtained. The initial prototype such obtained showed better result than the randomly selected one commonly used in FCM, which was demonstrated by experimental results.

Movement Intention Detection of Human Body Based on Electromyographic Signal Analysis Using Fuzzy C-Means Clustering Algorithm (인체의 동작의도 판별을 위한 퍼지 C-평균 클러스터링 기반의 근전도 신호처리 알고리즘)

  • Park, Kiwon;Hwang, Gun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2016
  • Electromyographic (EMG) signals have been widely used as motion commands of prosthetic arms. Although EMG signals contain meaningful information including the movement intentions of human body, it is difficult to predict the subject's motion by analyzing EMG signals in real-time due to the difficulties in extracting motion information from the signals including a lot of noises inherently. In this paper, four Ag/AgCl electrodes are placed on the surface of the subject's major muscles which are in charge of four upper arm movements (wrist flexion, wrist extension, ulnar deviation, finger flexion) to measure EMG signals corresponding to the movements. The measured signals are sampled using DAQ module and clustered sequentially. The Fuzzy C-Means (FCMs) method calculates the center values of the clustered data group. The fuzzy system designed to detect the upper arm movement intention utilizing the center values as input signals shows about 90% success in classifying the movement intentions.