• 제목/요약/키워드: fuzzy-c means

검색결과 449건 처리시간 0.033초

병렬유전자 알고리즘을 기반으로한 퍼지 시스템의 동정 (Identification of Fuzzy System Driven to Parallel Genetic Algorithm)

  • 최정내;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.201-203
    • /
    • 2007
  • The paper concerns the successive optimization for structure and parameters of fuzzy inference systems that is based on parallel Genetic Algorithms (PGA) and information data granulation (IG). PGA is multi, population based genetic algorithms, and it is used tu optimize structure and parameters of fuzzy model simultaneously, The granulation is realized with the aid of the C-means clustering. The concept of information granulation was applied to the fuzzy model in order to enhance the abilities of structural optimization. By doing that, we divide the input space to form the premise part of the fuzzy rules and the consequence part of each fuzzy rule is newly' organized based on center points of data group extracted by the C-Means clustering, It concerns the fuzzy model related parameters such as the number of input variables to be used in fuzzy model. a collection of specific subset of input variables, the number of membership functions according to used variables, and the polynomial type of the consequence part of fuzzy rules, The simultaneous optimization mechanism is explored. It can find optimal values related to structure and parameter of fuzzy model via PGA, the C-means clustering and standard least square method at once. A comparative analysis demonstrates that the Dnmosed algorithm is superior to the conventional methods.

  • PDF

VS-FCM: Validity-guided Spatial Fuzzy c-Means Clustering for Image Segmentation

  • Kang, Bo-Yeong;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.89-93
    • /
    • 2010
  • In this paper a new fuzzy clustering approach to the color clustering problem has been proposed. To deal with the limitations of the traditional FCM algorithm, we propose a spatial homogeneity-based FCM algorithm. Moreover, the cluster validity index is employed to automatically determine the number of clusters for a given image. We refer to this method as VS-FCM algorithm. The effectiveness of the proposed method is demonstrated through various clustering examples.

Fuzzy c-means 알고리즘을 이용한 TCS 데이터 주행특성 분류 방법 연구 (Driving Characteristics Classification of TCS Data Based on Fuzzy c-means Clustering Algorithm)

  • 박원식;김동근;양영규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.1021-1024
    • /
    • 2009
  • 현재 사용되고 있는 통행시간 분류방법은 하나의 통행시간을 대푯값으로 가지고 있다. 이에 문제점은 고속도로 특성으로 규정 속도 이상의 속도로 주행하는 차량, 규정 속도 및 휴게소 이용차량, 운전자의 운전 습성, 통행 목적, 피로의 정도, 운전자 성향과 도로상황에 따라 통행시간이 다르게 나타나는 점이다. TCS(Toll Collection System) 자료는 고속도로의 다양한 특성이 포함되어 있으며, 대상 구간의 거리가 멀수록 목적지에 도달하는 통행시간의 분산이 커지는 특성 또한 보인다. 따라서 이를 처리하기 위한 효율적인 통행시간 분류, 구간대표통행시간 추출 알고리즘이 필요하다. 기존의 방법은 전체 통행차량의 통행시간을 감안한 방법으로 통행시간 예측시 정확성이 저하된다. 본 연구에서는 TCS 자료를 Fuzzy c-means 알고리즘을 이용하여 일일 고속도로 통행시간의 시간별 주행특성을 고려한 대푯 값을 추출하는 알고리즘을 제안하였다. 실제 서울-청주 구간을 운행한 TCS 자료를 가지고 실시한 실험으로, 주행특성 및 도로상황을 고려한 Fuzzy c-means를 이용한 통행시간 분류방법과 기존의 통행시간 분류 방법을 통한 통행시간을 PIFAB를 사용 TCS 자료의 실제 통행시간과 경로통행시간을 비교 평가하였다. 평가한 결과 본 연구에서 제안하는 Fuzzy c-means기법은 기존 방법인 MAD기법보다 75%, 신뢰구간(95%) 추출법 대비 81%의 정확성을 제고하였다.

Interval Type-2 Possibilistic Fuzzy C-means 클러스터링을 위한 퍼지화 상수 결정 방법 (Determining the Fuzzifier Values for Interval Type-2 Possibilistic Fuzzy C-means Clustering)

  • 주원희;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제27권2호
    • /
    • pp.99-105
    • /
    • 2017
  • 일반적으로 type-1 fuzzy set 에 존재하는 불확실성을 보다 효율적으로 다루고 제어하기 위하여 Type-2 fuzzy set (T2 FS)이 널리 사용되고 있다. T2 FS에서 퍼지화 상수 (fuzzifier value) m은 이러한 불확실성을 처리하기 위한 가장 중요한 요소이다. 따라서 적절한 퍼지화 상수 값을 결정하는 연구는 여전히 지속되고 있고, 많은 방법들이 연구 되어 왔다. 본 논문에서는 주어진 패턴을 분류하기 위하여 Interval type-2 possibilistic fuzzy C-means (IT2PFCM) 클러스터링 방법을 사용한다. 클러스터링을 위해 사용된 IT2 PFCM 방법에서 각 데이터에 대하여 적응적으로 적절한 퍼지화 상수의 값을 계산하는 방법을 제안한다. 히스토그램 접근법을 통하여 각각의 데이터 포인트로부터 정보를 추출해 내고 추출된 정보를 이용하여 두 개의 퍼지화 상수인 $m_1$, $m_2$. 값을 결정한다. 이렇게 얻어진 값은 interval type-2 fuzzy의 최저 및 최고 멤버쉽 값을 결정하게 된다.

DNA칩 데이터 분석을 위한 유전자발연 통합분석 프로그램의 개발 (Program Development of Integrated Expression Profile Analysis System for DNA Chip Data Analysis)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • 제16권4호
    • /
    • pp.381-388
    • /
    • 2001
  • DNA칩의 유전자 발현 데이터의 통합적 분석을 위하여 매트랩을 기반으로 한 통합분석 프로그램을 구축하였다. 이 프로그램은 유전자 발현 분석을 위해 일반적으로 많이 쓰는 방법인 Hierarchical clustering(HC), K-means, Self-organizing map(SOM), Principal component analysis(PCA)를 지원하며, 이외에 Fuzzy c-means방법과 최근에 발표된 Singular value decomposition(SVD) 분석 방법도 지원하고 있다. 통합분석프로그램의 성능을 알아보기 위하여 효모의 포자형성(sporulation)과 정의 유전자발현 데이터를 사용하였으며, 각 분석 방법에 따른 분석 결과를 제시하였으며, 이 프로그램이 유전자 발현데이타의 통합적인 분석을 위해 효과적으로 사용될 수 있음을 제시하였다.

  • PDF

Improved Classification Algorithm using Extended Fuzzy Clustering and Maximum Likelihood Method

  • Jeon Young-Joon;Kim Jin-Il
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.447-450
    • /
    • 2004
  • This paper proposes remotely sensed image classification method by fuzzy c-means clustering algorithm using average intra-cluster distance. The average intra-cluster distance acquires an average of the vector set belong to each cluster and proportionates to its size and density. We perform classification according to pixel's membership grade by cluster center of fuzzy c-means clustering using the mean-values of training data about each class. Fuzzy c-means algorithm considered membership degree for inter-cluster of each class. And then, we validate degree of overlap between clusters. A pixel which has a high degree of overlap applies to the maximum likelihood classification method. Finally, we decide category by comparing with fuzzy membership degree and likelihood rate. The proposed method is applied to IKONOS remote sensing satellite image for the verifying test.

  • PDF

Evaluation of Subtractive Clustering based Adaptive Neuro-Fuzzy Inference System with Fuzzy C-Means based ANFIS System in Diagnosis of Alzheimer

  • Kour, Haneet;Manhas, Jatinder;Sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • 제6권2호
    • /
    • pp.87-90
    • /
    • 2019
  • Machine learning techniques have been applied in almost all the domains of human life to aid and enhance the problem solving capabilities of the system. The field of medical science has improved to a greater extent with the advent and application of these techniques. Efficient expert systems using various soft computing techniques like artificial neural network, Fuzzy Logic, Genetic algorithm, Hybrid system, etc. are being developed to equip medical practitioner with better and effective diagnosing capabilities. In this paper, a comparative study to evaluate the predictive performance of subtractive clustering based ANFIS hybrid system (SCANFIS) with Fuzzy C-Means (FCM) based ANFIS system (FCMANFIS) for Alzheimer disease (AD) has been taken. To evaluate the performance of these two systems, three parameters i.e. root mean square error (RMSE), prediction accuracy and precision are implemented. Experimental results demonstrated that the FCMANFIS model produce better results when compared to SCANFIS model in predictive analysis of Alzheimer disease (AD).

FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구 (Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE)

  • 김욱동;오성권;김현기
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

Switching Regression Analysis via Fuzzy LS-SVM

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.609-617
    • /
    • 2006
  • A new fuzzy c-regression algorithm for switching regression analysis is presented, which combines fuzzy c-means clustering and least squares support vector machine. This algorithm can detect outliers in switching regression models while yielding the simultaneous estimates of the associated parameters together with a fuzzy c-partitions of data. It can be employed for the model-free nonlinear regression which does not assume the underlying form of the regression function. We illustrate the new approach with some numerical examples that show how it can be used to fit switching regression models to almost all types of mixed data.

  • PDF

차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화 (The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm)

  • 안태천;노석범;김용수
    • 한국지능시스템학회논문지
    • /
    • 제24권2호
    • /
    • pp.161-165
    • /
    • 2014
  • 본 논문에서는 입력 공간의 부분 영역의 특성을 기술하기 위하여 각 부분 영역을 대표하는 prototype을 정의하고 정의된 Prototype 에 가중치를 적용하여 각 부분 영역이 각 클래스의 경계면에 미치는 영향을 차등화 하는 Fuzzy Prototype 분류기를 제안 한다. 제안된 패턴 분류기의 Prototype은 퍼지 클러스터링 알고리즘인 Fuzzy C-Means Clustering 알고리즘을 사용하여 결정한다. 또한, 각 부분 영역의 가중치를 결정하기 위하여 유전자 알고리즘에서 파생된 차분 진화 알고리즘을 적용하여 각각의 퍼지 규칙의 가중치를 최적화 한다. 또한 퍼지 규칙 기반 시스템 기반 패턴 분류기의 경우 각각의 퍼지 규칙의 후반부 구조인 다항식의 계수를 추정하기 위하여 Linear Discriminant Analysis를 사용한다. 마지막으로, 본 논문에서 제안한 패턴 분류기의 패턴 분류 특성 및 성능을 평가하기위하여 기계 학습 데이터를 사용한다.