• Title/Summary/Keyword: fuzzy topology

Search Result 115, Processing Time 0.024 seconds

L-pre-separation axioms in (2, L)-topologies based on complete residuated lattice-valued logic

  • Zeyada, Fathei M.;Abd-Allahand, M. Azab;Mousa, A.K.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.115-127
    • /
    • 2009
  • In the present paper we introduce and study L-pre-$T_0$-, L-pre-$T_1$-, L-pre-$T_2$ (L-pre-Hausdorff)-, L-pre-$T_3$ (L-pre-regularity)-, L-pre-$T_4$ (L-pre-normality)-, L-pre-strong-$T_3$-, L-pre-strong-$T_4$-, L-pre-$R_0$-, L-pre-$R_1$-separation axioms in (2, L)-topologies where L is a complete residuated lattice.Sometimes we need more conditions on L such as the completely distributive law or that the "$\bigwedge$" is distributive over arbitrary joins or the double negation law as we illustrate through this paper. As applications of our work the corresponding results(see[1,2]) are generalized and new consequences are obtained.

Scatternet Formation Algorithm based on Relative Neighborhood Graph

  • Cho, Chung-Ho;Son, Dong-Cheul;Kim, Chang-Suk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.132-139
    • /
    • 2008
  • This paper proposes a scatternet topology formation, self-healing, and self-routing path optimization algorithm based on Relative Neighborhood Graph. The performance of the algorithm using ns-2 and extensible Bluetooth simulator called blueware shows that even though RNG-FHR does not have superior performance, it is simpler and easier to implement in deploying the Ad-Hoc network in the distributed dynamic environments due to the exchange of fewer messages and the only dependency on local information. We realize that our proposed algorithm is more practicable in a reasonable size network than in a large scale.

Optimal Placement of Measurement Using GAs in Harmonic State Estimation of Power System (전력시스템 고조파 상태 춘정에서 GA를 미용한 최적 측정위치 선정)

  • 정형환;왕용필;박희철;안병철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.471-480
    • /
    • 2003
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. Among the reasons for its complexity are the system size, conflicting requirements of estimator accuracy, reliability in the presence of transducer noise and data communication failures, adaptability to change in the network topology and cost minimization. In particular, the number of harmonic instruments available is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Genetic Algorithms (GAs) which is widely used in areas such as: optimization of the objective function, learning of neural networks, tuning of fuzzy membership functions, machine learning, system identification and control. This HSE has been applied to the Simulation Test Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using Genetic Algorithms (GAs) in the Harmonic State Estimation (HSE).

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.

Regional Path Re-selection Period Determination Method for the Energy Efficient Network Management in Sensor Networks applied SEF (통계적 여과 기법이 적용된 센서 네트워크에서 에너지 효율적인 네트워크 관리를 위한 영역별 경로 재설정 주기 결정 기법)

  • Park, Hyuk;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.69-78
    • /
    • 2011
  • A large-scale sensor network usually operates in open and unattended environments, hence individual sensor node is vulnerable to various attacks. Therefore, malicious attackers can physically capture sensor nodes and inject false reports into the network easily through compromised nodes. These false reports are forwarded to the base station. The false report injection attack causes not only false alarms, but also the depletion of the restricted energy resources in a battery powered network. The statistical en-route filtering (SEF) mechanism was proposed to detect and drop false reports en route. In SEF, the choice of routing paths largely affect the energy consumption rate and the detecting power of the false report. To sustain the secure routing path, when and how to execute the path re-selection is greatly need by reason of the frequent network topology change and the nodes's limitations. In this paper, the regional path re-selection period determination method is proposed for efficient usage of the limited energy resource. A fuzzy logic system is exploited in order to dynamically determine the path re-selection period and compose the routing path. The simulation results show that up to 50% of the energy is saved by applying the proposed method.