• 제목/요약/키워드: fuzzy similarity

검색결과 248건 처리시간 0.031초

Similarity Measure Construction for Non-Convex Fuzzy Membership Function

  • 박현정;김성신;이상혁
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.145-149
    • /
    • 2008
  • The similarity measure is constructed for non-convex fuzzy membership function using well known Hamming distance measure. Comparison with convex fuzzy membership function is carried out, furthermore characteristic analysis for non-convex function are also illustrated. Proposed similarity measure is proved and the usefulness is verified through example. In example, usefulness of proposed similarity is pointed out.

거리 측도를 이용한 퍼지 엔트로피와 유사측도의 구성 (Construction of Fuzzy Entropy and Similarity Measure with Distance Measure)

  • 이상혁;김성신
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.521-526
    • /
    • 2005
  • 모호함의 측도를 위하여 퍼지 엔트로피와 거리측도 그리고 유사측도와의 관계를 이용하여 새로운 퍼지 측도를 제안하였다. 제안된 퍼지 엔트로피는 거리측도를 이용하여 구성된다. 거리측도는 일반적으로 사용되는 해밍 거리를 이용하였다. 또한 집합사이의 유사성을 측정하기 위한 유사측도를 거리 측도를 이용하여 구성하였고, 제안한 퍼지 엔트로피와 유사측도를 증명을 통하여 타당성을 확인하였다.

Fuzzy Entropy Construction based on Similarity Measure

  • 박현정;양인석;류수록;이상혁
    • 한국지능시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.257-261
    • /
    • 2008
  • In this Paper we derived fuzzy entropy that is based on similarity measure. Similarity measure represents the degree of similarity between two informations, those informations characteristics are not important. First we construct similarity measure between two informations, and derived entropy functions with obtained similarity measure. Obtained entropy is verified with proof. With the help of one-to-one similarity is also obtained through distance measure, this similarity measure is also proved in our paper.

퍼지 이론에 기초한 머신-셀 구성방법 (A machine-cell formation method based on fuzzy set)

  • 이노성;임춘우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1565-1568
    • /
    • 1997
  • In this paper, a fuzzy based machine-cell formation algorithm for cellular manufacturing is presented. The fuzzy lovic is employed to express the degree of appropriateness when alternative machnies are specified to process a part shape. For machine grouping, the similarity coefficient based approach is used. The algorithm produces efficient machine cells and part families which maximize the similarity values.

  • PDF

정보시스템에서 퍼지용어의 확장된 AHP를 사용한 레벨화와 유사성 측정 (A Leveling and Similarity Measure using Extended AHP of Fuzzy Term in Information System)

  • 류경현;정환묵
    • 한국지능시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.212-217
    • /
    • 2009
  • 특정 분야의 용어를 표현하는 전문용어 사이의 계층관계를 학습하는 방법은 규칙기반학습방법, 통계기반학습방법 등이 있다. 본 논문에서는 문서에서 추출된 퍼지용어 정보를 바탕으로 한 온톨로지 구조를 카테고리화하여 퍼지용어의 전문성을 이용하여 주어진 퍼지용어의 상위어 후보를 레벨화한 후 퍼지용어 의미유사도를 계산하여 선택된 후보들 중에서 최적의 상위어후보를 결정한다. 즉, 퍼지용어의 전문성을 레벨화하기 위한 확장된 AHP방법은 퍼지용어사이의 비교를 통해 가중치나 상대적 중요성을 결정한 후 퍼지집합의 Min연산자와 다이스계수, Min+다이스계수방법들을 비교한다. 이 방법들은 퍼지용어 의미유사도에 따라 문서들이 가지는 의미론적 내용과 관계의 식별을 바탕으로 보다 더 정확하게 문서를 분류할 수 있고 자연어처리 등 많은 분야에 활용될 수 있을 것이다.

지식모니터링시스템에서 감성기준을 고려한 EFASIT 모델 (An EFASIT model considering the emotion criteria in Knowledge Monitoring System)

  • 류경현;피수영
    • 인터넷정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.107-117
    • /
    • 2011
  • 웹의 등장은 전통적인 정보검색을 비롯하여 지식관리와 일반 상거래 등 사회 전 분야의 급격한 변혁을 초래하였다. 그러나 검색엔진은 일반적으로 관련된 계산함수에 의해 순서화된 URL의 방대한 목록을 제공하지만, 관련 없는 정보의 필터링이나 사용자가 필요로 하는 정보의 검색에 많은 시간이 소요된다. 본 논문에서는 웹상의 효율적인 문서검색을 위해서 영역 코퍼스 정보를 바탕으로 확장된 퍼지 계층화 의사결정법(Extended Fuzzy AHP Method : EFAM)과 유사도 기법(SImilarity Technology : SIT)을 결합하고, 감성기준을 고려한 EFASIT(Extended Fuzzy AHP and SImilarity Technology)모델을 제안한다. 제안한 감성기준을 고려한 EFASIT 모델은 다양한 의사결정자들의 퍼지지식의 통합으로 좀 더 명확한 규칙을 생성할 수 있고 의사결정을 하는데 도움을 준다는 것을 실험을 통하여 확인한다.

On some properties of distance measures and fuzzy entropy

  • Lee, Sang-Hyuk;Kim, Sungshin
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.9-12
    • /
    • 2002
  • Representation and quantification of fuzziness are required for the uncertain system modelling and controller design. Conventional results show that entropy of fuzzy sets represent the fuzziness of fuzzy sets. In this literature, the relations of fuzzy enropy, distance measure and similarity measure are discussed, and distance measure is proposed. With the help of relations of fuzzy enropy, distance measure and similarity measure, fuzzy entropy is represented by the newly proposed distance measure. With simple fuzzy set, example is illustrated.

퍼지 유사도 척도 (Fuzzy Similarity Measure)

  • 이광형
    • 한국지능시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.119-121
    • /
    • 1998
  • 퍼지 시스템의 퍼지 하이퍼그래프에 의해서 표현되었다고 할때, 퍼지 집합을 나타내는 퍼지 에지사이의 유사도를 측정할 필요가 있다. 또한 원소들 사이의 유사도를 측정할 필요가 있다. 본 논문은 이런 필요성에 따라서 퍼지 유사도를 측정하는 척도를 제안한다. 하나는 퍼지 집합 사이의 유사도를 측정하고, 또 하나는 원소 사이의 퍼지 유사도를 측정해 준다. 이 척도는 퍼지집합과 원소 개개의 유사성을 중시하고 시스템 분석 분야에서 이용될 수 있다.

  • PDF

Image Denoising via Fast and Fuzzy Non-local Means Algorithm

  • Lv, Junrui;Luo, Xuegang
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1108-1118
    • /
    • 2019
  • Non-local means (NLM) algorithm is an effective and successful denoising method, but it is computationally heavy. To deal with this obstacle, we propose a novel NLM algorithm with fuzzy metric (FM-NLM) for image denoising in this paper. A new feature metric of visual features with fuzzy metric is utilized to measure the similarity between image pixels in the presence of Gaussian noise. Similarity measures of luminance and structure information are calculated using a fuzzy metric. A smooth kernel is constructed with the proposed fuzzy metric instead of the Gaussian weighted L2 norm kernel. The fuzzy metric and smooth kernel computationally simplify the NLM algorithm and avoid the filter parameters. Meanwhile, the proposed FM-NLM using visual structure preferably preserves the original undistorted image structures. The performance of the improved method is visually and quantitatively comparable with or better than that of the current state-of-the-art NLM-based denoising algorithms.

Improvement of Three Mixture Fragrance Recognition using Fuzzy Similarity based Self-Organized Network Inspired by Immune Algorithm

  • Widyanto, M.R.;Kusumoputro, B.;Nobuhara, H.;Kawamoto, K.;Yoshida, S.;Hirota, K.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.419-422
    • /
    • 2003
  • To improve the recognition accuracy of a developed artificial odor discrimination system for three mixture fragrance recognition, Fuzzy Similarity based Self-Organized Network inspired by Immune Algorithm (F-SONIA) is proposed. Minimum, average, and maximum values of fragrance data acquisitions are used to form triangular fuzzy numbers. Then the fuzzy similarity treasure is used to define the relationship between fragrance inputs and connection strengths of hidden units. The fuzzy similarity is defined as the maximum value of the intersection region between triangular fuzzy set of input vectors and the connection strengths of hidden units. In experiments, performances of the proposed method is compared with the conventional Self-Organized Network inspired by Immune Algorithm (SONIA), and the Fuzzy Learning Vector Quantization (FLVQ). Experiments show that F-SONIA improves recognition accuracy of SONIA by 3-9%. Comparing to the previously developed artificial odor discrimination system that used FLVQ as pattern classifier, the recognition accuracy is increased by 14-25%.

  • PDF