• Title/Summary/Keyword: fuzzy similarity

Search Result 248, Processing Time 0.023 seconds

Modeling of Self-Constructed Clustering and Performance Evaluation (자기-구성 클러스터링의 모델링 및 성능평가)

  • Ryu Jeong woong;Kim Sung Suk;Song Chang kyu;Kim Sung Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.490-496
    • /
    • 2005
  • In this paper, we propose a self-constructed clustering algorithm based on inference information of the fuzzy model. This method makes it possible to automatically detect and optimize the number of cluster and parameters by using input-output data. The propose method improves the performance of clustering by extended supervised learning technique. This technique uses the output information as well as input characteristics. For effect the similarity measure in clustering, we use the TSK fuzzy model to sent the information of output. In the conceptually, we design a learning method that use to feedback the information of output to the clustering since proposed algorithm perform to separate each classes in input data space. We show effectiveness of proposed method using simulation than previous ones

DNA Based Cloud Storage Security Framework Using Fuzzy Decision Making Technique

  • Majumdar, Abhishek;Biswas, Arpita;Baishnab, Krishna Lal;Sood, Sandeep K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3794-3820
    • /
    • 2019
  • In recent years, a cloud environment with the ability to detect illegal behaviours along with a secured data storage capability is much needed. This study presents a cloud storage framework, wherein a 128-bit encryption key has been generated by combining deoxyribonucleic acid (DNA) cryptography and the Hill Cipher algorithm to make the framework unbreakable and ensure a better and secured distributed cloud storage environment. Moreover, the study proposes a DNA-based encryption technique, followed by a 256-bit secure socket layer (SSL) to secure data storage. The 256-bit SSL provides secured connections during data transmission. The data herein are classified based on different qualitative security parameters obtained using a specialized fuzzy-based classification technique. The model also has an additional advantage of being able to decide on selecting suitable storage servers from an existing pool of storage servers. A fuzzy-based technique for order of preference by similarity to ideal solution (TOPSIS) multi-criteria decision-making (MCDM) model has been employed for this, which can decide on the set of suitable storage servers on which the data must be stored and results in a reduction in execution time by keeping up the level of security to an improved grade.

Fuzzy Relevance-based Transcoding for Differentiated Streaming Media Service in the Proxy System (프록시 시스템에서 차별화된 스트리밍 미디어 서비스를 위한 퍼지 적합도 기반 트랜스 코딩)

  • Lee, Chong-Deuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2785-2792
    • /
    • 2011
  • Such problems as delay, congestion, and crosstalk in the proxy system degrade not only QoS (Quality of Service) but responsiveness and reliability of the streaming media service. To solve this problem this paper proposed a FRTP (Fuzzy Relevance-based Transcoding Proxy) mechanism. The proposed FRTP mechanism analyzes fuzzy similarity for partitioned segment versions of media objects to create a FRTG (Fuzzy Relevance-based Transcoding Graph). Created FRTG determines the transcoding for partitioned media object segment versions. Determined transcoding improves DSR (Delay Saving Ratios), CHPR (Cache Hit Precision Ratio), and CHRR (Cache Hit Recall Ratio). The proposed mechanism is simulated to evaluate such performance parameters as DSR, CHPR, and CHRR. Simulation results shows that the proposed mechanism outperforms in DSR, CHPR and CHRR compared with the other existing mechanisms.

Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems with Information Granulation (정보 Granules에 의한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계)

  • Park Keon-Jun;Ahn Tae-Chon;Oh Sung-kwun;Kim Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.81-86
    • /
    • 2005
  • In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informally speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality Granulation of information with the aid of Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method (LSM). An aggregate objective function with a weighting factor is also used in order to achieve a balance between performance of the fuzzy model. The proposed model is evaluated with using a numerical example and is contrasted with the performance of conventional fuzzy models in the literature.

Priority Evaluation of Preliminary Cases for IMO Information Management System using Fuzzy TOPSIS and AHP (퍼지 TOPSIS&AHP를 이용한 IMO 정보관리시스템 예비과제 우선순위 평가)

  • Jang, Woon-Jae
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.493-498
    • /
    • 2013
  • This paper is aimed to priority evaluation of preliminary cases for IMO -IMS(International Maritime Organization- Information Management System) using fuzzy TOPSIS(Technique for Order Performance by Similarity to Ideal Solution) and AHP(Analytic Hierarchy Process). To this solve, therefore, this paper extract 24 preliminary cases and select 4 major preliminary alternative cases after analysing the structure of its alternative cases using FSM(Fuzzy Structure Modeling). Also, the weights of evaluation factors determine using AHP which able to keep the consistency when decision-makers assess. In AHP method, but, the numbers of paired comparison incerase as much as the numbers of the comparison items increase and because this evaluation have the many of vagueness, the decision of final ranking is used to fuzzy TOPSIS method which is included TOPSIS and Fuzzy Set Theory. The result are developed as order as Management of IMO Convention Information, Delivery of IMO Convention Information, Total IMO Database, Knowledge Hub of IMO Convention Information in IMO-IMS.

Analysis of Saccharomyces Cell Cycle Expression Data using Bayesian Validation of Fuzzy Clustering (퍼지 클러스터링의 베이지안 검증 방법을 이용한 발아효모 세포주기 발현 데이타의 분석)

  • Yoo Si-Ho;Won Hong-Hee;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1591-1601
    • /
    • 2004
  • Clustering, a technique for the analysis of the genes, organizes the patterns into groups by the similarity of the dataset and has been used for identifying the functions of the genes in the cluster or analyzing the functions of unknown gones. Since the genes usually belong to multiple functional families, fuzzy clustering methods are more appropriate than the conventional hard clustering methods which assign a sample to a group. In this paper, a Bayesian validation method is proposed to evaluate the fuzzy partitions effectively. Bayesian validation method is a probability-based approach, selecting a fuzzy partition with the largest posterior probability given the dataset. At first, the proposed Bayesian validation method is compared to the 4 representative conventional fuzzy cluster validity measures in 4 well-known datasets where foray c-means algorithm is used. Then, we have analyzed the results of Saccharomyces cell cycle expression data evaluated by the proposed method.

A Multi-Perspective Benchmarking Framework for Estimating Usable-Security of Hospital Management System Software Based on Fuzzy Logic, ANP and TOPSIS Methods

  • Kumar, Rajeev;Ansari, Md Tarique Jamal;Baz, Abdullah;Alhakami, Hosam;Agrawal, Alka;Khan, Raees Ahmad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.240-263
    • /
    • 2021
  • One of the biggest challenges that the software industry is facing today is to create highly efficient applications without affecting the quality of healthcare system software. The demand for the provision of software with high quality protection has seen a rapid increase in the software business market. Moreover, it is worthless to offer extremely user-friendly software applications with no ideal security. Therefore a need to find optimal solutions and bridge the difference between accessibility and protection by offering accessible software services for defense has become an imminent prerequisite. Several research endeavours on usable security assessments have been performed to fill the gap between functionality and security. In this context, several Multi-Criteria Decision Making (MCDM) approaches have been implemented on different usability and security attributes so as to assess the usable-security of software systems. However, only a few specific studies are based on using the integrated approach of fuzzy Analytic Network Process (FANP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) technique for assessing the significant usable-security of hospital management software. Therefore, in this research study, the authors have employed an integrated methodology of fuzzy logic, ANP and TOPSIS to estimate the usable - security of Hospital Management System Software. For the intended objective, the study has taken into account 5 usable-security factors at first tier and 16 sub-factors at second tier with 6 hospital management system softwares as alternative solutions. To measure the weights of parameters and their relation with each other, Fuzzy ANP is implemented. Thereafter, Fuzzy TOPSIS methodology was employed and the rating of alternatives was calculated on the foundation of the proximity to the positive ideal solution.

The Weight Decision of Multi-dimensional Features using Fuzzy Similarity Relations and Emotion-Based Music Retrieval (퍼지 유사관계를 이용한 다차원 특징들의 가중치 결정과 감성기반 음악검색)

  • Lim, Jee-Hye;Lee, Joon-Whoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.637-644
    • /
    • 2011
  • Being digitalized, the music can be easily purchased and delivered to the users. However, there is still some difficulty to find the music which fits to someone's taste using traditional music information search based on musician, genre, tittle, album title and so on. In order to reduce the difficulty, the contents-based or the emotion-based music retrieval has been proposed and developed. In this paper, we propose new method to determine the importance of MPEG-7 low-level audio descriptors which are multi-dimensional vectors for the emotion-based music retrieval. We measured the mutual similarities of musics which represent a pair of emotions expressed by opposite meaning in terms of each multi-dimensional descriptor. Then rough approximation, and inter- and intra similarity ratio from the similarity relation are used for determining the importance of a descriptor, respectively. The set of weights based on the importance decides the aggregated similarity measure, by which emotion-based music retrieval can be achieved. The proposed method shows better result than previous method in terms of the average number of satisfactory musics in the experiment emotion-based retrieval based on content-based search.

Image Retrieval with Fuzzy Triples to Support Inexact and Concept-based Match (근사 정합과 개념 기반 정합을 지원하는 퍼지 트리플 기반 이미지 검색)

  • Jeong, Seon-Ho;Yang, Jae-Dong;Yang, Hyeong-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.964-973
    • /
    • 1999
  • 본 논문에서는 퍼지 트리플을 사용하는 내용 기반 이미지 검색 방법을 제안한다. 이미지 내 객체들 사이의 공간 관계는 내용 기반 이미지 검색을 위해 사용되는 주요한 속성들 중의 하나이다. 그러나, 기존의 트리플을 이용한 이미지 검색 시스템들은 개념 기반 검색 방법을 지원하지 못하고, 방향들 사이의 근사 정합을 처리하지 못하는 문제점을 가지고 있다. 이 문제를 해결하기 위하여 본 논문에서는 개념 기반 정합과 근사 정합을 지원하는 퍼지 트리플을 이용한 이미지 검색 방법을 제안한다. 개념 기반 정합을 위해서는 퍼지 소속성 집합으로 이루어진 시소러스가 사용되며, 근사 정합을 위해서는 방향들 사이의 관계를 정량화 하기 위한 k-weight 함수가 각각 이용된다. 이 두 가지 정합은 퍼지 트리플 간의 퍼지 정합을 통하여 균일하게 지원될 수 있다. 본 논문에서는 또한, 개념 기반 정합과 근사 정합에 대한 검색 효과를 정량적으로 평가하는 작업을 수행한다. Abstract This paper proposes an inexact and a concept-based image match technique based on fuzzy triples. The most general method adopted to index and retrieve images based on this spatial structure may be triple framework. However, there are two significant drawbacks in this framework; one is that it can not support a concept-based image retrieval and the other is that it fails to deal with an inexact match among directions. To compensate these problems, we develope an image retrieval technique based on fuzzy triples to make the inexact and concept-based match possible. For the concept-based match, we employ a set of fuzzy membership functions structured like a thesaurus, whereas for the inexact match, we introduce k-weight functions to quantify the similarity between directions. In fuzzy triples, the two facilities are uniformly supported by fuzzy matching. In addition, we analyze the retrieval effectiveness of our framework regarding the degree of the conceptual matching and the inexact matching.

Fuzzy Logic PID controller based on FPGA

  • Tipsuwanporn, V.;Runghimmawan, T.;Krongratana, V.;Suesut, T.;Jitnaknan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1066-1070
    • /
    • 2003
  • Recently technologies have created new principle and theory but the PID control system remains its popularity as the PID controller contains simple structure, including maintenance and parameter adjustment being so simple. Thus, this paper proposes auto tune PID by fuzzy logic controller based on FPGA which to achieve real time and small size circuit board. The digital PID controller design to consist of analog to digital converter which use chip TDA8763AM/3 (10 bit high-speed low power ADC), digital to analog converter which use two chip DAC08 (8 bit digital to analog converters) and fuzzy logic tune digital PID processor embedded on chip FPGA XC2S50-5tq-144. The digital PID processor was designed by fundamental PID equation which architectures including multiplier, adder, subtracter and some other logic gate. The fuzzy logic tune digital PID was designed by look up table (LUT) method which data storage into ROM refer from trial and error process. The digital PID processor verified behavior by the application program ModelSimXE. The result of simulation when input is units step and vary controller gain ($K_p$, $K_i$ and $K_d$) are similarity with theory of PID and maximum execution time is 150 ns/action at frequency are 30 MHz. The fuzzy logic tune digital PID controller based on FPGA was verified by control model of level control system which can control level into model are correctly and rapidly. Finally, this design use small size circuit board and very faster than computer and microcontroller.

  • PDF