• 제목/요약/키워드: fuzzy reasoning rule

검색결과 87건 처리시간 0.028초

가중 퍼지 페트리네트 표현에서 경험정보로 확신도를 이용하는 가중 퍼지추론 (Weighted Fuzzy Reasoning Using Certainty Factors as Heuristic Information in Weighted Fuzzy Petri Net Representations)

  • 이무은;이동은;조상엽
    • Journal of Information Technology Applications and Management
    • /
    • 제12권4호
    • /
    • pp.1-12
    • /
    • 2005
  • In general, other conventional researches propose the fuzzy Petri net-based fuzzy reasoning algorithms based on the exhaustive search algorithms. If it can allow the certainty factors representing in the fuzzy production rules to use as the heuristic information, then it can allow the reasoning of rule-based systems to perform fuzzy reasoning in more effective manner. This paper presents a fuzzy Petri net(FPN) model to represent the fuzzy production rules of a rule-based system. Based on the fuzzy Petri net model, a weighted fuzzy reasoning algorithm is proposed to Perform the fuzzy reasoning automatically, This algorithm is more effective and more intelligent reasoning than other reasoning methods because it can perform fuzzy reasoning using the certainty factors which are provided by domain experts as heuristic information

  • PDF

퍼지 페트리네트를 이용한 구간값 퍼지 집합 후진추론 (Interval-Valued Fuzzy Set Backward Reasoning Using Fuzzy Petri Nets)

  • 조상엽;김기석
    • 한국멀티미디어학회논문지
    • /
    • 제7권4호
    • /
    • pp.559-566
    • /
    • 2004
  • 일반적으로 퍼지 생성규칙의 확신도와 규칙에 나타나는 퍼지 명제의 확신도는 0과 1사이의 실수로 표현한다. 만일 퍼지 생성규칙의 확신도와 퍼지 명제의 확신도를 구간값 퍼지 집합으로 표현한다면, 규칙기반시스템이 더 유연한 방법으로 퍼지 추론을 하는 것이 가능하게 된다. 본 논문에서는 퍼지 페트리네트와 이 네트에 기반을 둔 규칙 기반시스템을 위한 구간값 퍼지 집합 후진추론 알고리즘을 제안한다. 규칙 기반시스템에 있는 퍼지 생성규칙은 퍼지 페트리네트로 모형화된다. 여기에서 퍼지 생성규칙에 나타나는 퍼지 명제의 확신도와 규칙의 확신도는 구간값 퍼지 집합으로 표현한다. 여기에서 제안한 알고리즘은 목표노드에서 시작노드까지 후진추론 통로를 찾아낸 후 목표노드의 확신도를 계산한다. 구간값 퍼지 집합 후진추론 알고리즘은 규칙 기반 시스템이 더 유연하고 사람들이 하는 것과 같은 퍼지 후진추론을 가능하게 한다.

  • PDF

가중 퍼지 페트리네트를 이용한 가중 퍼지 후진추론 (Weighted Fuzzy Backward Reasoning Using Weighted Fuzzy Petri-Nets)

  • 조상엽;이동은
    • 인터넷정보학회논문지
    • /
    • 제5권4호
    • /
    • pp.115-124
    • /
    • 2004
  • 본 논문에서는 가중 퍼지 페트리네트에 기반을 둔 규칙기반시스템을 위한 가중 퍼지 후진추론 알고리즘을 제안한다. 규칙기반시스템에 있는 퍼지 생성규칙은 가중 퍼지 페트리네트로 모형화된다. 여기에서 퍼지 생성규칙에 나타나는 퍼지 명제의 진리값과 규칙의 확신도는 퍼지 숫자로 표현한다. 그리고 규칙에 나타나는 퍼지 명제의 가중값도 퍼지 숫자로 표현하다. 제안한 가중 퍼지 후진추론 알고리즘은 목표노드에서 초기노드까지 후진추론 통로를 생성한 후 목표노드의 확신도를 계산한다. 우리가 제안한 알고리즘은 규칙기반시스템이 더 유연하고 사람과 같은 방법으로 가중 퍼지 후진추론을 하는 것을 가능하게 한다.

  • PDF

A Construction of Fuzzy Inference Network based on Neural Logic Network and its Search Strategy

  • Lee, Mal-rey
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2000년도 추계공동학술대회논문집
    • /
    • pp.375-389
    • /
    • 2000
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule- inference. network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search costs for searching sequentially and searching by means of search priorities.

  • PDF

퍼지 페트리네트를 이용한 구간간 퍼지집합 추론 (Interval-valued Fuzzy Set Reasoning Using Fuzzy Petri Nets)

  • 조경달;조상엽
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.625-631
    • /
    • 2004
  • 일반적으로 퍼지 생성규칙의 확신도와 규칙에 나타나는 퍼지 명제의 확신도는 0과 1사이의 실수로 표현한다. 만일 퍼지 생성규칙의 확신도와 퍼지 명제의 확신도를 구간 값 퍼지 집합으로 표현한다면, 규칙기반시스템이 더 유연한 방법으로 퍼지 추론을 하는 것이 가능하게 된다[15]. 본 논문에서는 퍼지 페트리네트와 이 네트에 기반을 둔 규칙기반시스템을 위한 구간 값 퍼지 집합 추론 알고리즘을 제안한다. 규칙기반시스템에 있는 퍼지 생성규칙은 퍼지 페트리네트로 모형화 된다. 여기에서 퍼지 생성규칙에 나타나는 퍼지 명제의 확신도와 규칙의 확신도는 구간 값 퍼지 집합으로 표현한다. 제안한 구간 값 퍼지집합 추론알고리즘은 규칙기반시스템에서 더 유연한 퍼지추론을 하는 것을 가능하게 한다.

퍼지제어를 위한 가속화 추론 방법 (Accelerated reasoning method for fuzzy control)

  • 남세규;정인수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1058-1062
    • /
    • 1993
  • A fuzzy reasoning method is proposed for the implementation of control systems based on non-fuzzy microprocessors. The essence of the proposed method is to search the local active miles instead of the global rule base. Thus the reasoning is conveniently performed on a master cell as a fuzzy accelerating kernel, which is transformed from an active fuzzy cell. The interpolative reasoning is simplified via adopting the algebraic product of fulfillment for the conditional connective AND and the weighted average for the rule sentence connective ALSO.

  • PDF

퍼지추론을 이용한 지식기반 전기화재 원인진단시스템 (A Knowledge-based Electrical Fire Cause Diagnosis System using Fuzzy Reasoning)

  • 이종호;김두현
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.16-21
    • /
    • 2006
  • This paper presents a knowledge-based electrical fire cause diagnosis system using the fuzzy reasoning. The cause diagnosis of electrical fires may be approached either by studying electric facilities or by investigating cause using precision instruments at the fire site. However, cause diagnosis methods for electrical fires haven't been systematized yet. The system focused on database(DB) construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. The cause diagnosis system for the electrical fire was implemented with entity-relational DB systems using Access 2000, one of DB development tools. Visual Basic is used as a DB building tool. The inference to confirm fire causes is conducted on the knowledge-based by combined approach of a case-based and a rule-based reasoning. A case-based cause diagnosis is designed to match the newly occurred fire case with the past fire cases stored in a DB by a kind of pattern recognition. The rule-based cause diagnosis includes intelligent objects having fuzzy attributes and rules, and is used for handling knowledge about cause reasoning. A rule-based using a fuzzy reasoning has been adopted. To infer the results from fire signs, a fuzzy operation of Yager sum was adopted. The reasoning is conducted on the rule-based reasoning that a rule-based DB system built with many rules derived from the existing diagnosis methods and the expertise in fire investigation. The cause diagnosis system proposes the causes obtained from the diagnosis process and showed possibility of electrical fire causes.

Active Suspension System for a One-wheel Car Model Using Single Input Rule Modules Fuzzy Reasoning

  • Yoshimura, Toshio;Teramura, Itaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1275-1280
    • /
    • 2004
  • This paper presents the construction of an active suspension system of a one-wheel car model by using fuzzy reasoning. The car model is approximately described by a nonlinear two degrees freedom system subject to excitation from a road profile, and the active control force is constructed by actuating a pneumatic actuator, and the degradation of the performance due to the delay of the pneumatic actuator is improved by inserting a compensator. The fuzzy control is obtained by single input rule modules fuzzy reasoning, and the excitation from the road profile is estimated by using a disturbance observer. The experimental result shows that the proposed active suspension system much improves the performance in the vibration suppression of the car model.

  • PDF

퍼지추론규칙을 이용한 적응형 평가시스템 (An Adaptive Evaluation System Using Fuzzy Reasoning Rule)

  • 엄명용;정순영;이원규
    • 컴퓨터교육학회논문지
    • /
    • 제6권4호
    • /
    • pp.95-113
    • /
    • 2003
  • 본 논문에서는 기존의 LCMS에서 사용되는 평가시스템에 퍼지 추론 규칙을 이용한 적응형 퍼지평가시스템(AFES ; Adaptie Fuzzy Evaluation System)을 제안한다. AFES 는 학습자가 하나의 학습코스(learning course)에 들어가기 전에 퍼지진단평가(fuzzy diagnostic evealuation)를 통해 학습자에게 코스수준(course level)을 부여한다. 학습자는 코스수준에 따른 맞춤식 학습경로(learning path)로 학습을 종료한 후, 퍼지최종평가(fuzzy final evaluation)를 통해 최종성적(final grade)을 AFES 으로부터 부여 받는다. AFES의 가장 큰 특징은 최종성적의 점수 부여 규칙에 있는데, 만약 서로 다른 학습자가 동일한 문제 수에 대하여 같은 수의 정답을 냈더라도, AFES 는 125 가지 퍼지 추론 규칙(fuzzy reasoning rule)에 의거하여 탄력적으로 서로 다른 최종성적을 학습자에게 부여한다.

  • PDF

신경논리망을 이용한 퍼지추론 네트워크와 탐색전략 (Fuzzy Inference Network and Search Strategy using Neural Logic Network)

  • 이말례
    • 한국멀티미디어학회논문지
    • /
    • 제4권2호
    • /
    • pp.189-196
    • /
    • 2001
  • 퍼지 논리의 추론과정에서 일부의 정보가 무시되어 적절하지 못한 추론 결과를 초래 할 수 있다. 한편 신경망은 패턴 처리에는 적합하지만 인간의 지식을 모델링하기 위해서 필요한 논리적인 추론에는 부적합하다. 그러나 신경망의 변형인 신경 논리망을 이용하면 논리적인 추론이 가능하다. 따라서 본 논문에서는 기존의 신경 논리망을 기반으로 하는 추론네트워크를 확장하여 퍼지 추론 네트워크를 구성한다. 그리고 기존의 추론 네트워크에서 사용되는 전파규칙을 보완하여 적용한다. 퍼지 추론 네트워크상에서 퍼지 규칙의 실행부에 해당하는 명제의 믿음 값을 결정하기 위해서는 추론하고자 하는 명제에 연결된 노드들을 탐색해야 한다.

  • PDF