• Title/Summary/Keyword: fuzzy parameters

Search Result 1,236, Processing Time 0.027 seconds

On relationship among h value, membership function, and spread in fuzzy linear regression using shape-preserving operations

  • Hong, Dug-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.306-310
    • /
    • 2008
  • Fuzzy regression, a nonparametric method, can be quite useful in estimating the relationships among variables where the available data are very limited and imprecise. It can also serve as a sound methodology that can be applied to a variety of management and engineering problems where variables are interacting in an uncertain, qualitative, and fuzzy way. A close examination of the fuzzy regression algorithm reveals that the resulting possibility distribution of fuzzy parameters, which makes this technique attractive in a fuzzy environment, is dependent upon an h parameter value. The h value, which is between 0 and 1, is referred to as the degree of fit of the estimated fuzzy linear model to the given data, and is subjectively selected by a decision maker (DM) as an input to the model. The selection of a proper value of h is important in fuzzy regression, because it determines the range of the posibility ditributions of the fuzzy parameters. In this paper, we discuss the interdependent relationship among the h value, membership function shape, and the spreads of fuzzy parameters in fuzzy linear regression with fuzzy input-output using shape-preserving operations.

  • PDF

Cancer Cell Recognition by Fuzzy Logic

  • Na, Cheol-Hun
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.466-470
    • /
    • 2011
  • This paper proposes the new method based on fuzzy logic which recognizes between normal and abnormal. The object image was the Thyroid Gland cell image that was diagnosed as normal and abnormal(two types of abnormal : follicular neoplastic cell, and papillary neoplastic cell), respectively. The nuclei were successfully diagnosed as normal and abnormal. The multiple feature parameters (pre-obtained 16 feature parameters of image data) were used to extract the features of each nucleus. As a consequence of using fuzzy logic algorithm, proposed in this paper, average recognition rate of 98.25% was obtained.

A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm (Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

Structurally Adaptive Fuzzy Radial Basis Function Networks (구조적으로 적응하는 퍼지 RBF 신경회로망)

  • Choi, Jong-Soo;Lee, Gi-Bum;Kwon, Oh-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2203-2205
    • /
    • 1998
  • This paper describes fuzzy radial basis function networks(FRBFN) extracting fuzzy rules through the learning from training data set. The proposed FRBFN is derived from the functional equivalence between RBF networks and fuzzy inference systems. The FRBFN learn by assigning new fuzzy rules and updating the parameters of existing fuzzy rules. The parameters of the FRBFN are adjusted using the standard LMS algorithm. The performance of the FRBFN is illustrated with function approximation and system identification.

  • PDF

Position Control of Fuzzy-Sliding Mode Controller (퍼지-슬라이딩모드 제어를 이용한 위치제어에 관한 연구)

  • 한경욱;임영도
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.221-224
    • /
    • 2000
  • We consider one of robust controller, fuzzy-sliding mode controller dealing with model uncertainty, simplified representation of nonlinear system, changed parameters of plant. We propose fuzzy-sliding mode algorithm which provides control input that has system states approaching the choosed sliding surface. This fuzzy controller has a rule base to get initial states converged on sliding surface. This algorithm Is applied to a transfer function of DC motor to be modeled simply and do position control of DC motor due to system parameters. We compare fuzzy-sliding mode controller to both sliding mode controller and fuzzy controller to identify roust control.

  • PDF

Control of Inverted Pendulum using Robust Adaptive Fuzzy Controller (강인한 적응 퍼지 제어기를 이용한 도립 진자 제어)

  • Seo, Sam-Jun;Kim, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2441-2443
    • /
    • 2003
  • This paper proposes an indirect adaptive fuzzy controller for general SISO nonlinear systems. No a priori information on bounding constants of uncertainties including reconstruction errors and optimal fuzzy parameters is needed. The control law and the update laws for fuzzy rule structure and estimates of fuzzy parameters and bounding constants are determined so that the Lyapunov stability of the whole closed loop system is guaranteed. The computer simulation results for an inverted pendulum system show the performance of the proposed robust adaptive fuzzy controller.

  • PDF

A study on fuzzy-neural control of nonlinear system

  • Oh, Jae-Chul;Kim, Jin-Hwan;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.36-39
    • /
    • 1996
  • This paper proposes identification and control algorithm of nonlinear systems and the proposed fuzzy-neural network has following characteristics. The network is roughly divided into premise and consequence. The consequence function is nonlinear function which consists of three parameters and the membership function in the premise contains of two parameters. The parameters in premise and consequence are learned by the extended back-propagation algorithm which has a modified form of the generalized delta rule. Simulation results on the identification show that this method is more effective than that of Narendra [3]. The indirect fuzzy-neural control is made of the fuzzy-neural identification and controller. Result on the indirect fuzzy-neural control shows that the proposed fuzzy-neural network can be efficiently applied to nonlinear systems.

  • PDF

A Study on a Neuro-Fuzzy Controller Design (뉴로-퍼지 제어기 설계 연구)

  • Im, Jeong-Heum;Chung, Tae-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2120-2122
    • /
    • 2002
  • There are several types of control systems that use fuzzy logic controller as a essential system component. The majority of research work on fuzzy PID controller focuses on the conventional two-input PI or PD type controller. However, fuzzy PID controller design is a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. In this paper we combined conventional PI type and PD type fuzzy controller and set the initial parameters of this controller from the conventional PID controller gains obtained by Ziegler-Nichols tuning or other coarse tuning methods. After that, by replacing some of these parameters with sing1e neurons and making them to be adjusted by back-propagation learning algorithm we designed a neuro-fuzzy controller which showed good performance characteristics in both computer simulation and actual application.

  • PDF

On-line Parameter Estimator Based on Takagi-Sugeno Fuzzy Models

  • Park, Chang-Woo;Hyun, Chang-Ho;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.481-486
    • /
    • 2002
  • In this paper, a new on-line parameter estimation methodology for the general continuous time Takagi-Sugeno(T-5) fuzzy model whose parameters are poorly known or uncertain is presented. An estimator with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the plant parameterized model. By the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for the indirect adaptive fuzzy control. Based on the derived design method, the parameter estimation for controllable canonical T-S fuzzy model is also Presented.

A Study on the Parameters Tuning Method of the Fuzzy Power System Stabilizer Using Genetic Algorithm and Simulated Annealing (혼합형 유전 알고리즘을 이용한 퍼지 안정화 제어기의 계수동조 기법에 관한 연구)

  • Lee, Heung-Jae;Im, Chan-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.589-594
    • /
    • 2000
  • The fuzzy controllers have been applied to the power system stabilizer due to its excellent properties on the nonlinear systems. But the design process of fuzzy controller requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This process is time consuming task. This paper presents an parameters tuning method of the fuzzy power system stabilizer using the genetic algorithm and simulated annealing(SA). The proposed method searches the local minimum point using the simulated annealing algorithm. The proposed method is applied to the one-machine infinite-bus of a power system. Through the comparative simulation with conventional stabilizer and fuzzy stabilizer tuned by genetic algorithm under various operating conditions and system parameters, the robustness of fuzzy stabilizer tuned by proposed method with respect to the nonlinear power system is verified.

  • PDF