• 제목/요약/키워드: fuzzy parameters

검색결과 1,241건 처리시간 0.037초

퍼지제어 시스템의 제어값표 가감 동조방법 (The Look-up table Plus-Minus Tuning Method of Fuzzy Control Systems)

  • 최한수;정헌
    • 전력전자학회논문지
    • /
    • 제3권4호
    • /
    • pp.388-398
    • /
    • 1998
  • 퍼지제어시스템에 영향을 미치는 요소들은 제어규칙, 소속함수, 퍼지추론, 비퍼지화 그리고 이 출력이득요소 이다. 구성요소들 각각에 의한 동조방법은 요소들 중 일부만을 동조하기 때문에 동조대상 이외의 요소들에 대한 오류와 파라메타의 부적절한 설정등에 의해 적절한 동조가 이루어지지 못할 수 있으며 각 요소들간의 상관관계를 고려하여 동조를 수행해야 하는 어려움이 있다. 입 출력단에서 작용하는 이득요소들은 제어시스템에 직접적인 영향을 미치기 때문에 이들의 선정은 신중을 기해야 한다. 본 연구에서는 퍼지제어시스템의 동조를 위한 제어기 스스로 입 출력이득요소를 산출하는 방법과 퍼지제어기의 구성요소들에 의해 얻어진 초기의 제어값들을 원하는 목표치에 빨리 수렴할 수 있도록 동조하는 방법을 제안하였다.

  • PDF

A Study on an Adaptive Robust Fuzzy Controller with GAs for Path Tracking of a Wheeled Mobile Robot

  • Nguyen, Hoang-Giap;Kim, Won-Ho;Shin, Jin-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.12-18
    • /
    • 2010
  • This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. Genetic algorithms are employed to optimize the fuzzy rules of FBFN. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations.

계층적 클러스터링과 Gaussian Mixture Model을 이용한 뉴로-퍼지 모델링 (A Neuro-Fuzzy Modeling using the Hierarchical Clustering and Gaussian Mixture Model)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.512-519
    • /
    • 2003
  • 본 논문에서는 계층적 클러스터링과 GMM을 순차적으로 이용하여 최적의 파라미터를 추정하고 이를 뉴로-퍼지 모델의 초기 파리미터로 사용하여 모델의 성능 개선을 제안한다. 반복적인 시도 중 가장 좋은 파라미터를 선택하는 기존의 알고리즘 과 달리 계층적 클러스터링은 데이터들 간의 유클리디언 거리를 이용하여 클러스터를 생성하므로 반복적인 시도가 불필요하다. 또한 클러스터링 방법에 의해 퍼지 모델링을 행하므로 클러스터와 동일한 갯수의 적은 규칙을 갖는다. 제안된 방법의 유용함을 비선형 데이터인 Box-Jenkins의 가스로 예측 문제와 Sugeno의 비선형 시스템에 적용하여 이전의 연구보다 적은 규칙으로도 성능이 개선되는 것을 보였다.

T-S 퍼지 모델을 이용한 불확실한 카오스 시스템의 적응동기화 (T-S Fuzzy Model-Based Adaptive Synchronization of Chaotic System with Unknown Parameters)

  • 김재훈;박창우;김은태;박민용
    • 한국지능시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.270-275
    • /
    • 2005
  • 본 논문은 퍼지 모델을 이용한 불확실한 카오스 시스템의 적응 동기화 기법을 제안한다. 카오스 동기화 시스템은 마스터 시스템과 슬레이브 시스템으로 구성되며 각각의 시스템은 Takagi-Sugeno (T-S) 퍼지 모델을 통해 표현된다. 마스터 시스템은 파라미터가 미리 알려지지 않은 불확실한 모델로 가정되므로 불확실한 파라미터를 추정하기 위해 적응 기법을 적용하여 슬레이브 시스템을 설계한다. 동기화 오차 시스템을 안정화하고 불확실한 파라미터를 추정하는 적응 규칙을 이용한 제어기를 설계하며 Lyapunov 이론을 통해 안정도를 해석한다. 제안된 퍼지 적응 동기화 기법의 효과를 확인하기 위해서 Duffing 시스템과 Lorenz 시스템에 대해 모의 실험을 수행한다.

Automatic GA fuzzy modeling with fine tuning method

  • Son, You-Seok;Chang, Wook;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.189-192
    • /
    • 1996
  • This paper presents a systematic approach to identify a linguistic fuzzy model for a multi-input and single-output complex system. Such a model is composed of fuzzy rules, and its output is inferred by the simplified reasoning. The structure and membership function parameters for a fuzzy model are automatically and simultaneously identified by GA (Genetic Algorithm). After GA search, optimal parameters for the fuzzy model are finely tuned by a gradient method. A numerical example is provided to evaluate the feasibility of the proposed approach. Comparison shows that the suggested approach can produce the linguistic fuzzy model with higher accuracy and a smaller number of rules than the ones achieved previously in other methods.

  • PDF

Variable Structure Control with Fuzzy Reaching Law Method Using Genetic Algorithm

  • Sagong, Seong-Dae;Choi, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1430-1434
    • /
    • 2003
  • In this paper, for the fuzzy-reaching law method which has the characteristic of elimination of chattering at sliding mode as well as the characteristic of fast response at the design of variable structure controller with reaching law, optimal solutions for the determination of parameters of fuzzy membership functions by using genetic algorithm are proposed. Generally, the design of fuzzy controller has difficulties in determining the parameters of fuzzy membership functions by using a tedious trial-and-error process. To overcome these difficulties, this paper develops genetic algorithm of an optimal searching method based on genetic operation, and to verify the validity of this proposed method it is simulated through 2 link robot manipulator.

  • PDF

Design of Solving Similarity Recognition for Cloth Products Based on Fuzzy Logic and Particle Swarm Optimization Algorithm

  • Chang, Bae-Muu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4987-5005
    • /
    • 2017
  • This paper introduces a new method to solve Similarity Recognition for Cloth Products, which is based on Fuzzy logic and Particle swarm optimization algorithm. For convenience, it is called the SRCPFP method hereafter. In this paper, the SRCPFP method combines Fuzzy Logic (FL) and Particle Swarm Optimization (PSO) algorithm to solve similarity recognition for cloth products. First, it establishes three features, length, thickness, and temperature resistance, respectively, for each cloth product. Subsequently, these three features are engaged to construct a Fuzzy Inference System (FIS) which can find out the similarity between a query cloth and each sampling cloth in the cloth database D. At the same time, the FIS integrated with the PSO algorithm can effectively search for near optimal parameters of membership functions in eight fuzzy rules of the FIS for the above similarities. Finally, experimental results represent that the SRCPFP method can realize a satisfying recognition performance and outperform other well-known methods for similarity recognition under considerations here.

On-line Identification of a Fuzzy System

  • Kim, euntai;Lee, Heejin;Park, Minkee;Park, Mignon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.685-690
    • /
    • 1998
  • This paper presents an explanation regarding on-line identification of a fuzzy system. The fuzzy system to be identified is assumed to be in the type of singletion consequent parts and be represented by a linear combination of fuzzy basis function (FBF's). For on-line identification, squared-cosine (SCOS) fuzzy basis function is introduced to reduce the number of parameters to be identified and make the system consistent and differentiable. Then the parameters of the fuzzy system are identified on-line by the gradient search method. Finally, a computer simulation is performed to illustrate the validity of the suggested algorithms.

  • PDF

퍼지 사전 모수에 관한 베이지안 가설검정 (Hypotheses testing of Bayes' theorem for fuzzy prior parameters)

  • 강만기;최규탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.205-208
    • /
    • 2005
  • We have fuzzy hypotheses testing from Bayesian statistics with ideas from fuzzy sets theory to generalize Bayesian methods both for samples of fuzzy data and for prior distributions with non-precise parameters. Appling the principle of agreement index, the posterior odds ratio in the favor of hypotheses $H_0$ is equal to product of the fuzzy odds ratio and the fuzzy likelihood ratio. If the Posterior odds ratio exceeds the grade judgement, we accept the hypothesis $H_0$ for the degree.

  • PDF

Development of Global Function Approximations of Desgin optimization Using Evolutionary Fuzzy Modeling

  • Kim, Seungjin;Lee, Jongsoo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권11호
    • /
    • pp.1206-1215
    • /
    • 2000
  • This paper introduces the application of evolutionary fuzzy modeling (EFM) in constructing global function approximations to subsequent use in non-gradient based optimizations strategies. The fuzzy logic is employed for express the relationship between input training pattern in form of linguistic fuzzy rules. EFM is used to determine the optimal values of membership function parameters by adapting fuzzy rules available. In the study, genetic algorithms (GA's) treat a set of membership function parameters as design variables and evolve them until the mean square error between defuzzified outputs and actual target values are minimized. We also discuss the enhanced accuracy of function approximations, comparing with traditional response surface methods by using polynomial interpolation and back propagation neural networks in its ability to handle the typical benchmark problems.

  • PDF