• Title/Summary/Keyword: fuzzy modules

Search Result 84, Processing Time 0.032 seconds

An Experimental Study on Fuzzy Document Retrieval System (퍼지개념을 적용한 질의식의 분석과 문헌정보 검색에 관한 연구)

  • Lee Seung Chai
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.21
    • /
    • pp.249-290
    • /
    • 1991
  • Theoretical developments in the information retrieval have offered a number of alternatives to traditional Boolean retrieval. Probability theory and fuzzy set theory have played prominent roles here. Fuzzy set theory is an attempt to generalize traditional set theory by permitting partial membership in a set and this means recognizing different degrees to which a document can match a request. In this study, an experimentation of a document retrieval system using the fuzzy relation matrix of the keywords is described and the results are offered. The queries composed of keywords and Boolean operaters AND, OR, NOT were processed in the retrieval method, and the method was implemented on the PC of 32bit level (30 MHz) in an experimental system. The measurement of the recall ratio and precision ratio verified the effectiveness of the proposed fuzzy relation matrix of keywords and retrieval method. Compared to traditional crisp method in the same document database, the recall ratio increased $10\%$ high although the precision ratio decreased slightly. The problems, in this experiment, to be resolved are first, the design of the automatic data input and fuzzy indexing modules, through which the system . can have the ability of competition and usefulness. Second, devising a systematic procedure for assigning fuzzy weights to keywords in documents and in queries.

  • PDF

Multi-step Predictive Control of LMTT using DR-FNN

  • Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.392-395
    • /
    • 2003
  • In the maritime container terminal, LMTT (Linear Motor-based Transfer Technology) is horizontal transfer system for the yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle). The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car (mover). Because of large variant of mover's weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's trouble etc., LMCPS (Linear Motor Conveyance Positioning System) is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the soft-computing method of a multi-step prediction control for LMCPS using DR-FNN (Dynamically-constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi-step prediction. Consequently, the system has an ability to adapt for external disturbance, cogging force, force ripple, and sudden changes of itself.

  • PDF

Control of Input Series Output Parallel Connected DC-DC Converters

  • Natarajan, Sirukarumbur Pandurangan;Anandhi, Thangavel Saroja
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.265-270
    • /
    • 2007
  • Equal rating DC-DC converter modules can be connected in series at the input for circuits requiring higher input voltages and in parallel at the output for circuits requiring higher output currents. Since the converter modules may not be practically identical, closed loop control has to ensure that each module equally shares the total input voltage and the load current. A control scheme consisting of a common output voltage loop, individual inner current loops and individual input voltage loops have been designed in this work to achieve input voltage and load current sharing as well as load voltage regulation under supply and load disturbances. The output voltage loop provides the basic reference for the inner current loops, which are also modified by the respective input voltage loops. The average of the converter input voltages, which is dynamically varying, is chosen as the reference for input voltage loops. This choice of reference eliminates interaction among different control loops. Type II compensators and Fuzzy Logic Controllers (FLCs) are designed and compared through MATLAB based simulation and FLC is found to be satisfactory. Hence TMS320F2407A DSP based FLC is implemented and the results are presented which prove the superiority of the FLC developed for this research.

Pattern Recognition Using Spectrum Analyzer and Neural Network (신경망의 스펙트럼 분석기를 이용한 패턴 인식)

  • 김남익;한수환;전도홍
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.211-214
    • /
    • 1996
  • This paper propose a method for pattern recogniton using spectrum analyzer and fuzzy ARTMAP. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These Spectral feature vectors are invariant to shape translation, rotation, and scale transformations. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments include 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the ion problems of noisv shapes.

  • PDF

Development on Fuzzy-AHP Ranking Risk Assessment Model for the monitoring systems (관제시스템 구축을 위한 Fuzzy-AHP 위험 순위 평가 모델 개발)

  • Chung, Sung-Hak;Park, Tae-Joon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2011
  • The objective of this study is to develop an evaluation model for the National highway risky areas. Thus, for the purposes of doing this, National highway risky area evaluated targeting to provide determination ranking and suggesting rival-superiority factors as well as under-inferiority factors in ten National highway risky areas. This study developed for modules of risky areas evaluation, using fuzzy set theory and analytic hierarchy process for evaluation model of National highway risky area in transport environment. The preceding studies assess risk analysis through analysis of causal relationships by National highway safety sector not only handles rating scale development suitable for assessment area by referring to accident frequency model but also geometric structures model. As result of this study, this model of Fuzzy Ahp Risk Analysis (FARA) apply for programmable design in real time processing through easily derive strategy for improvement activities to provide a decision-making effectively. Furthermore, this study contributes frame for improvements of National highway construction for renovation's priority strategy as well as future's policy schemes.

Position Control of Linear Motor-based Container Transfer System using DR-FNNs (DR-FNNs를 이용한 리니어 모터 기반 컨테이너 이송시스템의 위치제어)

  • Lee, Jin-Woo;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwan-Soon
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.541-548
    • /
    • 2004
  • In the maritime container terminal. LMCTS (Linear Motor-based Container Transfer System) is horizontal transfer system for the yard automation, which In., been proposed to take the place of AGV (Automated Guided Vehicle). The system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car (mover). Because of large variant of mover's weight by loading and unloading containers, the difference of each characteristic of stator modules, and a stator module's trouble etc. LMCTS is considered as that the system is changed its model suddenly and variously. In this paper, we will introduce the softcomputing method of a multi-step prediction control for LMCTS using DR- FNN (Dynamically-constructed Recurrent Fuzzy Neural Network). The proposed control system is used two networks for multi step prediction Consequently, the system has an ability to adapt for external disturbance, detent force, force ripple, and sudden changes by loading and unloading the container.

Design of Meteorological Radar Echo Classifier Using Fuzzy Relation-based Neural Networks : A Comparative Studies of Echo Judgement Modules (FNN 기반 신경회로망을 이용한 기상 레이더 에코 분류기 설계 : 에코판단 모듈의 비교 분석)

  • Ko, Jun-Hyun;Song, Chan-Seok;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.562-568
    • /
    • 2014
  • There exist precipitation echo and non-precipitation echo in the meteorological radar. It is difficult to effectively issue the right weather forecast because of a difficulty in determining these ambiguous point. In this study, Data is extracted from UF data of meteorological radar used. Input and output data for designing two classifier were built up through the analysis of the characteristics of precipitation and non-precipitation. Selected input variables are considered for better performance and echo classifier is designed using fuzzy relation-based nueral network. Comparative studies on the performance of echo classifier are carried out by considering both echo judgement module 1 and module 2.

Robust Planar Shape Recognition Using Spectrum Analyzer and Fuzzy ARTMAP (스펙트럼 분석기와 퍼지 ARTMAP 신경회로망을 이용한 Robust Planar Shape 인식)

  • 한수환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.34-42
    • /
    • 1997
  • This paper deals with the recognition of closed planar shape using a three dimensional spectral feature vector which is derived from the FFT(Fast Fourier Transform) spectrum of contour sequence and fuzzy ARTMAP neural network classifier. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These spectral feature vectors are invariant to shape translation, rotation and scale transformation. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments including 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the recognition problems of noisy shapes.

  • PDF

A Study on Semantic Based Indexing and Fuzzy Relevance Model (의미기반 인덱스 추출과 퍼지검색 모델에 관한 연구)

  • Kang, Bo-Yeong;Kim, Dae-Won;Gu, Sang-Ok;Lee, Sang-Jo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.238-240
    • /
    • 2002
  • If there is an Information Retrieval system which comprehends the semantic content of documents and knows the preference of users. the system can search the information better on the Internet, or improve the IR performance. Therefore we propose the IR model which combines semantic based indexing and fuzzy relevance model. In addition to the statistical approach, we chose the semantic approach in indexing, lexical chains, because we assume it would improve the performance of the index term extraction. Furthermore, we combined the semantic based indexing with the fuzzy model, which finds out the exact relevance of the user preference and index terms. The proposed system works as follows: First, the presented system indexes documents by the efficient index term extraction method using lexical chains. And then, if a user tends to retrieve the information from the indexed document collection, the extended IR model calculates and ranks the relevance of user query. user preference and index terms by some metrics. When we experimented each module, semantic based indexing and extended fuzzy model. it gave noticeable results. The combination of these modules is expected to improve the information retrieval performance.

  • PDF

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.