• Title/Summary/Keyword: fuzzy models

Search Result 658, Processing Time 0.03 seconds

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF

Fuzzy Modeling of Truck-Trailer Backing Problem Using DNA Coding-Based Hybrid Algorithm (DNA 코딩 기반의 하이브리드 알고리즘을 이용한 Truck-Trailer Backing Problem의 퍼지 모델링)

  • Kim, Jang-Hyun;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2314-2316
    • /
    • 2000
  • In the construction of successful fuzzy models and/or controllers for nonlinear systems, identification of a good fuzzy Neural inference system is an important yet difficult problem, which is traditionally accomplished by trial and error process. In this paper, we propose a systematic identification procedure for complex multi-input single- output nonlinear systems with DNA coding method.DNA coding method is optimization algorithm based on biological DNA as are conventional genetic algothms (GAs). We also propose a new coding method for applying the DNA coding method to the identification of fuzzy Neural models. To acquire optimal TS fuzzy model with higher accuracy and economical size, we use the DNA coding method to optimize the parameters and the number of fuzzy inference system.

  • PDF

Implementation of Daily Water Supply Prediction System by Artificial Intelligence Models (일급수량 예측을 위한 인공지능모형 구축)

  • Yeon, In-sung;Jun, Kye-won;Yun, Seok-whan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.395-403
    • /
    • 2005
  • It is very important to forecast water supply for reasonal operation and management of water utilities. In this paper, water supply forecasting models using artificial intelligence are developed. Artificial intelligence models shows better results by using Temperature(t), water supply discharge (t-1) and water supply discharge (t-2), which are expressed by neural network(LMNNWS; Levenberg-Marquardt Neural Network for Water Supply, MDNNWS; MoDular Neural Network for Water Supply) and neuro fuzzy(ANASWS; Adaptive Neuro-Fuzzy Inference Systems for Water Supply). ANFISWS model which is applied for water supply forecasting shows stable application to the variable water supply data. As results, MDNNWS model shows the highest overall accuracy among proposed water supply forecasting models and the lowest estimation error with the order of ANFISWS, LMNNWS model.

Pattern Recognition Method Using Fuzzy Clustering and String Matching (퍼지 클러스터링과 스트링 매칭을 통합한 형상 인식법)

  • 남원우;이상조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2711-2722
    • /
    • 1993
  • Most of the current 2-D object recognition systems are model-based. In such systems, the representation of each of a known set of objects are precompiled and stored in a database of models. Later, they are used to recognize the image of an object in each instance. In this thesis, the approach method for the 2-D object recognition is treating an object boundary as a string of structral units and utilizing string matching to analyze the scenes. To reduce string matching time, models are rebuilt by means of fuzzy c-means clustering algorithm. In this experiments, the image of objects were taken at initial position of a robot from the CCD camera, and the models are consturcted by the proposed algorithm. After that the image of an unknown object is taken by the camera at a random position, and then the unknown object is identified by a comparison between the unknown object and models. Finally, the amount of translation and rotation of object from the initial position is computed.

Fuzzy optimization of radon reduction by ventilation system in uranium mine

  • Meirong Zhang;Jianyong Dai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2222-2229
    • /
    • 2023
  • Radon and radon progeny being natural radioactive pollutants, seriously affect the health of uranium miners. Radon reduction by ventilation is an essential means to improve the working environment. Firstly, the relational model is built between the radon exhalation rate of the loose body and the ventilation parameters in the stope with radon percolation-diffusion migration dynamics. Secondly, the model parameters of radon exhalation dynamics are uncertain and described by triangular membership functions. The objective functions of the left and right equations of the radon exhalation model are constructed according to different possibility levels, and their extreme value intervals are obtained by the immune particle swarm optimization algorithm (IPSO). The fuzzy target and fuzzy constraint models of radon exhalation are constructed, respectively. Lastly, the fuzzy aggregation function is reconstructed according to the importance of the fuzzy target and fuzzy constraint models. The optimal control decision with different possibility levels and importance can be obtained using the swarm intelligence algorithm. The case study indicates that the fuzzy aggregation function of radon exhalation has an upward trend with the increase of the cut set, and fuzzy optimization provides the optimal decision-making database of radon treatment and prevention under different decision-making criteria.

A Studyon Implementation of Edge Detection Algorithms Based on fuzzy Membership Models (퍼지모델을 기반으로한 에지검출 알고리즘 구현에관한 연구)

  • Lee, Bae-Ho;Kim, So-Yeon;Kim, Kwang-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.9
    • /
    • pp.2447-2456
    • /
    • 1998
  • Edge detection in the presence of noise is a well-known problem. this pper atempts to implement edge detection algorithms using fuzzy reasoning of fuzzy membership models. It examines an application-motived approach for solving the problem. Our approach is divided into three stages; fitering, segmentation and tracing. Filtering removes the noise from the original image and segmentation determines the edges and deects them. Finally, tracing assembles the edges into the related structure. Proposed method can be used effectively on these procedures by using fuzzy reasoning based on fuzzy models. In is compared with the previous edge detectio algorithms with fvorable results. Simulation results of the research are presented and discussed.

  • PDF

A Formal Specification of Fuzzy Object Inference Model (퍼지 객체 추론 모델의 정형화)

  • Yang, Jae-Dong;Yang, Hyung-Jeong
    • Journal of KIISE:Databases
    • /
    • v.27 no.2
    • /
    • pp.141-150
    • /
    • 2000
  • There are three significant drawbacks in extant fuzzy rule-based expert system languages. First, they lack the functionality of composite object inference. Second, they do not support fuzzy reasoning semantically easy to understand and conceptually simple to use. Third, knowledge representation and reasoning style of their model have a great semantic gap with those of current database models. Therefore, it is very difficult for the two models to be seamlessly integrated with each other. This paper provides the formal specification of a fuzzy object inference model to solve the three drawbacks. GIS(Geographic Information System) application domain is used to demonstrate that our model naturally models complex GIS information in terms of composite objects and successfully performs fuzzy inference between them.

  • PDF

Short-Term Electrical Load Forecasting using Neuro-Fuzzy Models (뉴로-퍼지 모델을 이용한 단기 전력 수요 예측시스템)

  • Park, Yeong-Jin;Sim, Hyeon-Jeong;Wang, Bo-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.107-117
    • /
    • 2000
  • This paper proposes a systematic method to develop short-term electrical load forecasting systems using neuro-fuzzy models. The primary goal of the proposed method is to improve the performance of the prediction model in terms of accuracy and reliability. For this, the proposed method explores the advantages of the structure learning of the neuro-fuzzy model. The proposed load forecasting system first builds an initial structure off-line for each hour of four day types and then stores the resultant initial structures in the initial structure bank. Whenever a prediction needs to be made, the proposed system initializes the neuro-fuzzy model with the appropriate initial structure stored and trains the initialized model. In order to demonstrate the viability of the proposed method, we develop an one hour ahead load forecasting system by using the real load data collected during 1993 and 1994 at KEPCO. Simulation results reveal that the prediction system developed in this paper can achieve a remarkable improvement on both accuracy and reliability compared with the prediction systems based on multilayer perceptrons, radial basis function networks, and neuro-fuzzy models without the structure learning.

  • PDF

DNA coding-Based Fuzzy System Modeling for Chaotic Systems (DNA 코딩 기반 카오스 시스템의 퍼지 모델링)

  • Kim, Jang-Hyun;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.524-526
    • /
    • 1999
  • In the construction of successful fuzzy models and/or controllers for nonlinear systems, the identification of a good fuzzy inference system is an important yet difficult problem, which is traditionally accomplished by a time-consuming trial-and-error process. In this paper, we propose a systematic identification procedure for complex multi-input single-output nonlinear systems with DNA coding method. A DNA coding method is optimization algorithm based on biological DNA as conventional genetic algorithms(GAs) are. The strings in the DNA coding method are variable-length strings, while standard GAs work with a fixed-length coding scheme. the DNA coding method is well suited to learning because it allows a flexible representation of a fuzzy inference system. We also propose a new coding method fur applying the DNA coding method to the identification of fuzzy models. This coding scheme can effectively represent the zero-order Takagi-Sugeno(TS) fuzzy model. To acquire optimal TS fuzzy model with higher accuracy and economical size, we use the DNA coding method to optimize the parameters and the number of fuzzy inference system. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its application to a Duffing-forced oscillation system.

  • PDF

Semi-active fuzzy based control system for vibration reduction of a SDOF structure under seismic excitation

  • Braz-Cesar, Manuel T.;Barros, Rui C.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.389-395
    • /
    • 2018
  • This paper presents the application of a semi-active fuzzy based control system for seismic response reduction of a single degree-of-freedom (SDOF) framed structure using a Magnetorheological (MR) damper. Semi-active vibration control with MR dampers has been shown to be a viable approach to protect building structures from earthquake excitation. Moreover, intelligent damping systems based on soft-computing techniques such as fuzzy logic models have the inherent robustness to deal with typical uncertainties and non-linearities present in civil engineering structures. Thus, the proposed semi-active control system uses fuzzy logic based models to simulate the behavior of MR damper and also to develop the control algorithm that computes the required control signal to command the actuator. The results of the numerical simulations show the effectiveness of the suggested semi-active control system in reducing the response of the SDOF structure.