• Title/Summary/Keyword: fuzzy model identification

Search Result 210, Processing Time 0.023 seconds

A Development of Integrated Risk Management Model of Large Construction Projects (건설분야 통합 리스크관리에 관한 구성 모델)

  • Kim Chang-Hak;Park Seo-Young;Kang In-Seok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.101-108
    • /
    • 2004
  • The results of the study include a computerized system and a systematic Process model for risk management and analysis. This study analyzes the present status of risk management in the construction industry, and then suggests reasonable methods for improved risk management plans. This study defines risk management procedures as preparation, identification, analysis, response and management to manage potential risks In the construction project. The modules for computerizing this system consist of planning, construction, application of WBS (Work Breakdown Structure) and RBS (Risk Breakdown Structure), and risk analysis. The method logy for analyzing construction risk uses fuzzy theory, and the scope of developed system is focused to the contractors. The risk management system suggested in this study operates on the Internet, for providing contractors with a useful risk management tool by online system, with web-based menus that is helpful for practical application.

  • PDF

A Development of Integrated Prototype Model for Risk Management of Construction Projects (건설공사의 리스크관리를 위한 통합전산모형 구축)

  • Kim, Chang-Hak;Park, Seo-Young;Kang, In-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.469-480
    • /
    • 2006
  • The results of the study include a computerized system and a systematic process model for risk management and analysis. This study analyzes the present status of risk management in the construction industry, and then suggests reasonable methods for improved risk management plans. This study defines risk management procedures as preparation, identification, analysis, response and management to manage potential risks in the construction project. The modules for computerizing in this system consist of planning, construction, application of WBS (Work Breakdown Structure) and RBS (Risk Breakdown Structure), and risk analysis. The methodology for analyzing construction risk uses fuzzy theory, and the scope of developed system is focused to the contractors. The risk management system suggested in this study operates on the Internet, for providing contractors with a useful risk management tool by online system, with web-based menus that is helpful for practical application.

Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms (HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화)

  • 오성권;박호성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.487-496
    • /
    • 2000
  • In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

Modeling, Dynamic Analysis and Control Design of Full-Bridge LLC Resonant Converters with Sliding-Mode and PI Control Scheme

  • Zheng, Kai;Zhang, Guodong;Zhou, Dongfang;Li, Jianbing;Yin, Shaofeng
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.766-777
    • /
    • 2018
  • In this paper, a sliding mode and proportional plus integral (SM-PI) control combined with self-sustained phase shift modulation (SSPSM) for LLC resonant converters is presented. The proposed control scheme improves the transient response while preserving good steady-state performance. An averaged large signal model of an LLC converter with the ZVS modulation technique is developed for the SM control design. The sliding surface is obtained based on the input-output linearization concept. A system identification method is adopted to obtain the transform function of the LLC resonant converter, which is used to design the PI control. In order to reduce the inherent chattering problem in the steady state, the combined SM-PI control strategy is derived with fuzzy control, where the SM control is responsive during the transient state while the PI control prevails in the steady state. The combination of SSPSM and the SM-PI control provides ZVS operation, robustness and a fast transient response against step load variations. Simulation and experimental results validate the theoretical analysis and the attractive features of the proposed scheme.

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.

Enabling Vessel Collision-Avoidance Expert Systems to Negotiate

  • Hu, Qinyou;Shi, Chaojian;Chen, Haishan;Hu, Qiaoer
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.77-82
    • /
    • 2006
  • Automatic vessel collision-avoidance systems have been studied in the fields of artificial intelligence and navigation for decades. And to facilitate automatic collision-avoidance decision-making in two-vessel-encounter situation, several expert and fuzzy expert systems have been developed. However, none of them can negotiate with each other as seafarers usually do when they intend to make a more economic overall plan of collision avoidance in the COLREGS-COST-HIGH situations where collision avoidance following the International Regulations for Preventing Collisions at Sea(COLREGS) costs too much. Automatic Identification System(AIS) makes data communication between two vessels possible, and negotiation methods can be used to optimize vessel collision avoidance. In this paper, a negotiation framework is put forward to enable vessels to negotiate to optimize collision avoidance in the COLREGS-COST-HIGH situations at open sea. A vessel vector space is defined and therewith a cost model is put forward to evaluate the cost of collision-avoidance actions. Negotiations between a give-way vessel and a stand-on vessel and between two give-way vessels are considered respectively to reach overall low cost agreements. With the framework proposed in this paper, two vessels involved in a COLREGS-COST-HIGH situation can negotiate with each other to get a more economic overall plan of collision avoidance than that suggested by the traditional collision-avoidance expert systems.

  • PDF

Modeling of Shear-mode Rotary MR Damper Using Multi-layer Neural Network (다층신경망을 이용한 전단모드 회전형 MR 댐퍼의 모델링)

  • Cho, Jeong-Mok;Huh, Nam;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.875-880
    • /
    • 2007
  • Scientific challenges in the field of MR(magnetorheological) fluids and devices consist in the development of MR devices, the mathematical modeling and simulation of MR devices, and the development of (optimal) control algorithm for MR device systems. To take a maximum advantage of MR fluids in control applications a reliable mathematical model, which predicts their nonlinear characteristics, is needed. A inverse model of the MR device is required to calculate current(or voltage) input of MR damper, which generates required damping force. In this paper, we implemented test a bench for shear mode rotary MR damper and laboratory tests were performed to study the characteristics of the prototype shear-mode rotary MR damper. The direct identification and inverse dynamics modeling for shear mode rotary MR dampers using multi-layer neural networks are studied.

A Study on Identification of the Heat Vulnerability Area Considering Spatial Autocorrelation - Case Study in Daegu (공간적 자기상관성을 고려한 폭염취약지역 도출에 관한 연구 - 대구광역시를 중심으로)

  • Seong, Ji Hoon;Lee, Ki Rim;Kwon, Yong Seok;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.295-304
    • /
    • 2020
  • The IPCC (Intergovernmental Panel on Climate Change) recommended the importance of preventive measures against extreme weather, and heat waves are one of the main themes for establishing preventive measures. In this study, we tried to analyze the heat vulnerable areas by considering not only spatial characteristics but also social characteristics. Energy consumption, popu lation density, normalized difference vegetation index, waterfront distance, solar radiation, and road distribution were examined as variables. Then, by selecting a suitable model, SLM (Spatial Lag Model), available variables were extracted. Then, based on the Fuzzy theory, the degree of vulnerability to heat waves was analyzed for each variable, and six variables were superimposed to finally derive the heat vulnerable area. The study site was selected as the Daegu area where the effects of the heat wave were high. In the case of vulnerable areas, it was confirmed that the existing urban areas are mainly distributed in Seogu, Namgu, and Dalseogu of Daegu, which are less affected by waterside and vegetation. It was confirmed that both spatial and social characteristics should be considered in policy support for reducing heat waves in Daegu.

Application and Validation of Delay Dependent Parallel Distributed Compensation Controller for Rotary Wing System (회전익 시스템의 시간지연 종속 병렬분산보상제어기 적용과 검증)

  • You, Young-Jin;Choi, Yun-Sung;Jeong, Jin-Seok;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1043-1053
    • /
    • 2016
  • In this paper, the application of Parallel Distributed Compensation (PDC) controller for fixed pitch rotary wing system was studied. For nonlinear modeling, T-S fuzzy model was utilized to advance system control including the tilt type UAV. PDC controller was designed through the Linear Matrix Inequality (LMI). Experiments for determining the applicability and feasibility of PDC were performed using the 1 axis attitude control equipment and simulation. To verify the performance and characteristics of the controller, Mathworks Co. Simulink was used. After then, the PDC controller performance was verified and the results with developed controller using a 1 axis attitude control equipment were compared. Verification of the feasibility of PDC controller for the fixed pitch rotary wing system and identification of the overall performance and improvement analysis was conducted based on the experimental results.

The Evaluation of Effectiveness on RFID system based Logistics process (RFID 시스템 기반 물류프로세스 유효성 평가)

  • Choi, Yong-Jung;Han, Dae-Hee;Jeong, Hae-June;Han, Woo-Chul;Kim, Hyun-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.111-120
    • /
    • 2010
  • Looking at the application examples related to RFID systems around the world, it is easy to find that RFID systems are introduced in various industries, such as retail and consumer goods sectors, financial and security sectors, automotive and transport sector, leisure and sports sector, logistics, and health-related fields. This is because they can get their operational efficiency and competitiveness by means of product's visibility and transparency of information through RFID systems. However, it is required that evaluation of effectiveness on introducing RFID systems should be performed to strengthen construction willingness of RFID systems before actual introduction of the RFID systems in the process. This activity affects to introduction of RFID systems in industry-wide and then, will be able to create a synergy effect such as national industrial competitiveness improvement. The purpose of this study is to offer rational method on effectiveness analysis before and after RFID based process. Accordingly, the proposed Choquet fuzzy integral-based model will be allowed rational analysis by integrating quantitative and qualitative analysis. Through the effectiveness analysis of C company's RFID based process using the proposed evaluation model, we could identify that RFID-based logistics process was more effective than existing process.