• Title/Summary/Keyword: fuzzy learning

Search Result 982, Processing Time 0.025 seconds

Behavior Learning of Swarm Robot System using Bluetooth Network

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.1
    • /
    • pp.10-15
    • /
    • 2009
  • With the development of techniques, robots are getting smaller, and the number of robots needed for application is greater and greater. How to coordinate large number of autonomous robots through local interactions has becoming an important research issue in robot community. Swarm Robot Systems (SRS) is a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the SRS, a robot contains sensor part to percept the situation around them, communication part to exchange information, and actuator part to do a work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, it is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots. And we will discuss how to construct and what kind of procedure to develop the communicating system for group behavior of the SRS under intelligent space.

Design of FNN architecture based on HCM Clustering Method (HCM 클러스터링 기반 FNN 구조 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2821-2823
    • /
    • 2002
  • In this paper we propose the Multi-FNN (Fuzzy-Neural Networks) for optimal identification modeling of complex system. The proposed Multi-FNNs is based on a concept of FNNs and exploit linear inference being treated as generic inference mechanisms. In the networks learning, backpropagation(BP) algorithm of neural networks is used to updata the parameters of the network in order to control of nonlinear process with complexity and uncertainty of data, proposed model use a HCM(Hard C-Means)clustering algorithm which carry out the input-output dat a preprocessing function and Genetic Algorithm which carry out optimization of model The HCM clustering method is utilized to determine the structure of Multi-FNNs. The parameters of Multi-FNN model such as apexes of membership function, learning rates, and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization abilities of the model. NOx emission process data of gas turbine power plant is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF

Optimal Placement of Measurement Using GAs in Harmonic State Estimation of Power System (전력시스템 고조파 상태 춘정에서 GA를 미용한 최적 측정위치 선정)

  • 정형환;왕용필;박희철;안병철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.471-480
    • /
    • 2003
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. Among the reasons for its complexity are the system size, conflicting requirements of estimator accuracy, reliability in the presence of transducer noise and data communication failures, adaptability to change in the network topology and cost minimization. In particular, the number of harmonic instruments available is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Genetic Algorithms (GAs) which is widely used in areas such as: optimization of the objective function, learning of neural networks, tuning of fuzzy membership functions, machine learning, system identification and control. This HSE has been applied to the Simulation Test Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using Genetic Algorithms (GAs) in the Harmonic State Estimation (HSE).

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

A Study On Handwritten Numeral Recognition Using Numeral Shape Grasp and Divided FSOM (숫자의 형태 이해와 분할된 FSOM을 이용한 필기 숫자 인식에 관한 연구)

  • 서석배;김대진;강대성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1490-1499
    • /
    • 1999
  • This paper proposes a new handwritten numeral recognition method using numeral shape grasps and FSOM (Fuzzy Self-Organizing Map). The proposed algorithm is based on the idea that numeral input data with similar shapes are classified into the same class. Shapes of numeral data are created using lines of external-contact and the class of numeral data is determined by template matching of the shapes. Each class of numeral data has FSOM and feature extraction method, respectively. In this paper, we divide the numeral database into the 16 classes. The divided FSOM model allows not only an independent learning phase of SOM but also step-by-step learning. Experiments using Concordia University handwritten numeral database proved that the proposed algorithm is effective to improve recognition accuracy.

  • PDF

Experimental Studies of Real- Time Decentralized Neural Network Control for an X-Y Table Robot

  • Cho, Hyun-Taek;Kim, Sung-Su;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.185-191
    • /
    • 2008
  • In this paper, experimental studies of a neural network (NN) control technique for non-model based position control of the x-y table robot are presented. Decentralized neural networks are used to control each axis of the x-y table robot separately. For an each neural network compensator, an inverse control technique is used. The neural network control technique called the reference compensation technique (RCT) is conceptually different from the existing neural controllers in that the NN controller compensates for uncertainties in the dynamical system by modifying desired trajectories. The back-propagation learning algorithm is developed in a real time DSP board for on-line learning. Practical real time position control experiments are conducted on the x-y table robot. Experimental results of using neural networks show more excellent position tracking than that of when PD controllers are used only.

Web access prediction based on parallel deep learning

  • Togtokh, Gantur;Kim, Kyung-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.51-59
    • /
    • 2019
  • Due to the exponential growth of access information on the web, the need for predicting web users' next access has increased. Various models such as markov models, deep neural networks, support vector machines, and fuzzy inference models were proposed to handle web access prediction. For deep learning based on neural network models, training time on large-scale web usage data is very huge. To address this problem, deep neural network models are trained on cluster of computers in parallel. In this paper, we investigated impact of several important spark parameters related to data partitions, shuffling, compression, and locality (basic spark parameters) for training Multi-Layer Perceptron model on Spark standalone cluster. Then based on the investigation, we tuned basic spark parameters for training Multi-Layer Perceptron model and used it for tuning Spark when training Multi-Layer Perceptron model for web access prediction. Through experiments, we showed the accuracy of web access prediction based on our proposed web access prediction model. In addition, we also showed performance improvement in training time based on our spark basic parameters tuning for training Multi-Layer Perceptron model over default spark parameters configuration.

An Adaptive Tracking Control for Robotic Manipulators based on RBFN

  • Lee, Min-Jung;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 2007
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose an adaptive tracking control for robot manipulators using the radial basis function network (RBFN) that is e. kind of neural networks. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed adaptive tracking controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

Intelligent Motion Planner for Redundant Manipulators Controlled by Neuro-Biological Signals

  • Kim, Chang-Hyun;Kim, Min-Soeng;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.845-848
    • /
    • 2003
  • There are many researches on using human neuro-biological signals for various problems such as controlling a mechanical object and/or interfacing human with the computer. It is one of very interesting topics that human can use various instruments without learning specific knowledge if the instruments can be controlled as human intends. In this paper, we proposed an intelligent motion planner for a redundant manipulator, which is controlled by humans neuro-biological signals, especially, EOG (Electrooculogram). We found the optimal motion planner for the redundant manipulator that can move to the desired point. We used neural networks to find the inverse kinematics solution of the manipulator. We also showed the performance of the proposed motion planner with several simulations.

  • PDF

The Development of Performance Evaluation Processing System (수행평가 처리시스템 개발)

  • Seol, Moon-Gyu
    • Journal of The Korean Association of Information Education
    • /
    • v.4 no.2
    • /
    • pp.232-240
    • /
    • 2001
  • The aim of this study was to develop the performance evaluation processing system in elementary schools. First of all, the researcher reviewed theoretical aspects of performance evaluation. Fuzzy was used to devise the system for learning course. The performance evaluation processing system has been applied to Practical Arts Subject in elementary schools, from which good results were obtained.

  • PDF