• 제목/요약/키워드: fuzzy k-means clustering

검색결과 219건 처리시간 0.028초

Improved Algorithm for Fully-automated Neural Spike Sorting based on Projection Pursuit and Gaussian Mixture Model

  • Kim, Kyung-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.705-713
    • /
    • 2006
  • For the analysis of multiunit extracellular neural signals as multiple spike trains, neural spike sorting is essential. Existing algorithms for the spike sorting have been unsatisfactory when the signal-to-noise ratio(SNR) is low, especially for implementation of fully-automated systems. We present a novel method that shows satisfactory performance even under low SNR, and compare its performance with a recent method based on principal component analysis(PCA) and fuzzy c-means(FCM) clustering algorithm. Our system consists of a spike detector that shows high performance under low SNR, a feature extractor that utilizes projection pursuit based on negentropy maximization, and an unsupervised classifier based on Gaussian mixture model. It is shown that the proposed feature extractor gives better performance compared to the PCA, and the proposed combination of spike detector, feature extraction, and unsupervised classification yields much better performance than the PCA-FCM, in that the realization of fully-automated unsupervised spike sorting becomes more feasible.

Light Probe를 이용한 제한된 실내 환경에 존재하는 점 광원 추정 기법 (Point Light Source Estimation from indoor environment from Light Probe)

  • 유재덕;박정욱;조지호;이관행
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.494-499
    • /
    • 2007
  • 실제 영상과 가상의 오브젝트 또는 가상의 환경에 오브젝트를 합성하는 경우 등 사실적인 합성을 결과를 얻기 위해서는 실제 환경과 같은 배경 영상의 정확한 광원 정보가 필요하다. 본 논문에서는 실내 환경을 배경으로 영상을 합성 하는 과정에 필요한 광원정보를 카메라와 Light Probe를 이용하여 촬영된 단일 영상으로부터 추정하는 기법을 제안한다. 실내에 존재하는 광원들은 정확한 위치정보를 알 수 없는 실외환경에서와 달리 제한된 공간의 원점으로부터 3차원 공간에 위치한 좌표로 나타낼 수 있다. 광원을 추정하기 위해 먼저 실내 공간에 반사도가 높은 Light Probe를 위치하고 디지털 카메라의 적정 노출을 이용하여 광원 추정에 사용할 영상을 획득한다. 광원으로 존재하는 오브젝트의 경우 짧은 노출시간에도 카메라의 영상에 획득된다. 그렇기 때문에 단일 영상에서 광원의 영역을 추정하기 위해 영상처리를 통해 노출 시간을 짧게 하여 촬영한 영상과 비슷하게 밝은 영역만 표현되도록 처리를 한다. 전 처리된 영상으로부터 밝은 영역과 어두운 영역으로 구분을 하고 밝은 영역으로부터 광원의 정보를 추정한다. 추정된 광원들은 실제 렌더링에 곧바로 적용이 가능하며, 이를 통해 배경에 적합한 렌더링 결과를 얻을 수 있다.

  • PDF

고속도로 통행료 수납자료를 이용한 주행특성 클러스터링 기법 (Driving Characteristics Clustering use TCS Data)

  • 김동근;박원식;양영규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.1025-1028
    • /
    • 2009
  • 고속도로의 다양한 주행특성으로는 과속하는 차량, 휴게소나 기타목적의 이용차량, 운전자의 습관이나 피로도등이 있는데 이에 따라 고속도로 주행시간에 차이가 나타난다. 하지만 현재에는 이러한 특성을 고려하지 않고 통행시간 분류가 되고 있어 정확성과 신뢰성을 보장하지 못하고 있는 실정이다. 이에 본 연구에서는 데이터 분포에 따른 해석을 통하여 TCS데이터의 특성을 고려 할 수 있는 Fuzzy c-means 알고리즘과 단순히 임의의 초기값으로 분류하는 K-means와의 비교를 통해서 주행특성을 고려한 클러스터링 기법이 경우에 따라서 더 효과적이고 신뢰성 있는 분류방법이 될 수 있음을 증명하였다.

AWS자료 기반 SVR과 뉴로-퍼지 알고리즘 구현 호우주의보 가이던스 연구 (A Study on Heavy Rainfall Guidance Realized with the Aid of Neuro-Fuzzy and SVR Algorithm Using AWS Data)

  • 임승준;오성권;김용혁;이용희
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.526-533
    • /
    • 2014
  • In this study, we introduce design methodology to develop a guidance for issuing heavy rainfall warning by using both RBFNNs(Radial basis function neural networks) and SVR(Support vector regression) model, and then carry out the comparative studies between two pattern classifiers. Individual classifiers are designed as architecture realized with the aid of optimization and pre-processing algorithm. Because the predictive performance of the existing heavy rainfall forecast system is commonly affected from diverse processing techniques of meteorological data, under-sampling method as the pre-processing method of input data is used, and also data discretization and feature extraction method for SVR and FCM clustering and PSO method for RBFNNs are exploited respectively. The observed data, AWS(Automatic weather wtation), supplied from KMA(korea meteorological administration), is used for training and testing of the proposed classifiers. The proposed classifiers offer the related information to issue a heavy rain warning in advance before 1 to 3 hours by using the selected meteorological data and the cumulated precipitation amount accumulated for 1 to 12 hours from AWS data. For performance evaluation of each classifier, ETS(Equitable Threat Score) method is used as standard verification method for predictive ability. Through the comparative studies of two classifiers, neuro-fuzzy method is effectively used for improved performance and to show stable predictive result of guidance to issue heavy rainfall warning.

모듈화 된 신경 회로망을 이용한 음성의 Narrowband에서 Wideband로의 변환 (Narrowband to Wideband Conversion of Speech using Modularized Neural Network)

  • 우동헌;고참한;강현민;김유신;김형순
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.21-24
    • /
    • 2001
  • 본 논문은 신경 회로망을 이용하여, 전화망 대역의 음성, 즉, narrowband 음성에서 wideband 음성을 복원하고자 했다. BP 알고리즘을 사용하는 기존의 신경 회로망의 경우에는 음성과 같이 복잡하고 크기가 큰 훈련데이터에 대해서는 훈련이 제대로 되지 않는 단점이 있다. 그러므로 븐 논문에서는 이를 해결하기 위해 입력으로 들어온 LPC 켑스트럼 벡터를 k-means 알고리즘을 이용하여 미리 정한 개수의 cluster로 나눈 다음, 각각의 cluster에 대해 독립적인 신경 회로망을 적용했다 이로 인해 각각의 신경 회로망은 제한되고 서로 상관관계가 많은 음성들만 훈련하면 되므로, 기존의 신경 회로망에서 생기는 훈련의 정체를 개선할 수 있었다. 또 clustering 과정에서 생기는 오류를 보완하기 위해 후보신경 로망들의 출력에 fuzzy 개념을 적용해서 최종 출력을 내도록 했다 실험 결과에서, 제안한 알고리즘은 기존의 codebook mapping 알고리즘보다 스펙트럼 거리척도에 의한 비교 및 주관적인 음질 평가 양쪽에서 개선된 성능을 보였다.

  • PDF

Recognition of Radar Emitter Signals Based on SVD and AF Main Ridge Slice

  • Guo, Qiang;Nan, Pulong;Zhang, Xiaoyu;Zhao, Yuning;Wan, Jian
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.491-498
    • /
    • 2015
  • Recognition of radar emitter signals is one of core elements in radar reconnaissance systems. A novel method based on singular value decomposition (SVD) and the main ridge slice of ambiguity function (AF) is presented for attaining a higher correct recognition rate of radar emitter signals in case of low signal-to-noise ratio. This method calculates the AF of the sorted signal and ascertains the main ridge slice envelope. To improve the recognition performance, SVD is employed to eliminate the influence of noise on the main ridge slice envelope. The rotation angle and symmetric Holder coefficients of the main ridge slice envelope are extracted as the elements of the feature vector. And kernel fuzzy c-means clustering is adopted to analyze the feature vector and classify different types of radar signals. Simulation results indicate that the feature vector extracted by the proposed method has satisfactory aggregation within class, separability between classes, and stability. Compared to existing methods, the proposed feature recognition method can achieve a higher correct recognition rate.

시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스 리스크 관리 (Health Risk Management using Feature Extraction and Cluster Analysis considering Time Flow)

  • 강지수;정경용;정호일
    • 한국융합학회논문지
    • /
    • 제12권1호
    • /
    • pp.99-104
    • /
    • 2021
  • 본 논문에서는 시간 흐름을 고려한 특징추출과 군집분석을 이용한 헬스 리스크 관리를 제안한다. 제안하는 방법은 세단계로 진행한다. 첫 번째는 전처리 및 특징추출 단계이다. 이는 웨어러블 디바이스를 이용하여 라이프로그를 수집하여 불완전데이터, 에러, 잡음, 모순된 데이터를 제거하며 결측 값을 처리한다. 그 다음 특징추출을 위해 주성분 분석을 통해 중요 변수를 선택하고, 상관계수와 공분산을 통해 데이터 간의 관계와 유사한 데이터들의 분류를 진행한다. 또한 라이프로그에서 추출한 특징을 분석하기 위해 시간의 흐름을 고려하여 K-means 알고리즘을 통해 동적 군집을 진행한다. 새로운 데이터는 오차 제곱합의 증가분을 기반으로 유사성 거리 측정 방법을 통해 군집을 진행하고, 시간의 흐름을 고려하여 군집에 대한 정보를 추출한다. 따라서 특징 군집을 통해 헬스 의사결정 시스템을 이용하여 신체적 특성, 생활습관, 질병여부, 헬스케어 이벤트 발생위험, 예상 정도 등의 요소를 통해 리스크를 관리할 수 있다. 성능평가는 Precision, Recall, F-measure을 사용하여 제안하는 방법과 퍼지방법, 커널기반 방법을 비교한다. 평가결과 제안하는 방법이 우수하게 평가된다. 따라서 제안하는 방법을 통해 유병자와의 유사도를 이용하여 정확한 사용자의 잠재적 건강 위험을 예측 및 적절한 관리가 가능하다.

Identification of failure mechanisms for CFRP-confined circular concrete-filled steel tubular columns through acoustic emission signals

  • Li, Dongsheng;Du, Fangzhu;Chen, Zhi;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.525-540
    • /
    • 2016
  • The CFRP-confined circular concrete-filled steel tubular column is composed of concrete, steel, and CFRP. Its failure mechanics are complex. The most important difficulties are lack of an available method to establish a relationship between a specific damage mechanism and its acoustic emission (AE) characteristic parameter. In this study, AE technique was used to monitor the evolution of damage in CFRP-confined circular concrete-filled steel tubular columns. A fuzzy c-means method was developed to determine the relationship between the AE signal and failure mechanisms. Cluster analysis results indicate that the main AE sources include five types: matrix cracking, debonding, fiber fracture, steel buckling, and concrete crushing. This technology can not only totally separate five types of damage sources, but also make it easier to judge the damage evolution process. Furthermore, typical damage waveforms were analyzed through wavelet analysis based on the cluster results, and the damage modes were determined according to the frequency distribution of AE signals.

Face Detection for Automatic Avatar Creation by using Deformable Template and GA

  • Park, Tae-Young;Lee, Ja-Yong;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1534-1538
    • /
    • 2005
  • In this paper, we propose a method to detect contours of a face, eyes, and a mouth of a person in the color image in order to make an avatar automatically. First, we use the HSI color model to exclude the effect of various light conditions, and find skin regions in the input image by using the skin color defined on HS-plane. And then, we use deformable templates and genetic algorithm (GA) to detect contours of a face, eyes, and a mouth. Deformable templates consist of B-spline curves and control point vectors. Those represent various shapes of a face, eyes and a mouth. GA is a very useful search algorithm based on the principals of natural selection and genetics. Second, the avatar is automatically created by using GA-detected contours and Fuzzy C-Means clustering (FCM). FCM is used to reduce the number of face colors. In result, we could create avatars which look like handmade caricatures representing user's identity. Our approach differs from those generated by existing methods.

  • PDF

영상처리 기법을 통한 RBFNN 패턴 분류기 기반 개선된 지문인식 시스템 설계 (Design of Fingerprints Identification Based on RBFNN Using Image Processing Techniques)

  • 배종수;오성권;김현기
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.1060-1069
    • /
    • 2016
  • In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.