Kang, Myeongsu;Nguyen, Truc Kim Thi;Nguyen, Dinh Van;Kim, Cheol-Hong;Kim, Jong-Myon
Journal of the Korea Society of Computer and Information
/
v.18
no.4
/
pp.35-43
/
2013
As texture images have become prevalent throughout a variety of industrial applications, copyright protection of these images has become important issues. For this reason, this paper proposes a color-texture image watermarking algorithm utilizing texture properties inherent in the image. The proposed algorithm selects suitable blocks to embed a watermark using the energy and homogeneity properties of the grey level co-occurrence matrices as inputs for the fuzzy c-means clustering algorithm. To embed the watermark, we first perform a discrete wavelet transform (DWT) on the selected blocks and choose one of DWT subbands. Then, we embed the watermark into discrete cosine transformed blocks with a gain factor. In this study, we also explore the effects of the DWT subbands and gain factors with respect to the imperceptibility and robustness against various watermarking attacks. Experimental results show that the proposed algorithm achieves higher peak signal-to-noise ratio values (47.66 dB to 48.04 dB) and lower M-SVD values (8.84 to 15.6) when we embedded a watermark into the HH band with a gain factor of 42, which means the proposed algorithm is good enough in terms of imperceptibility. In addition, the proposed algorithm guarantees robustness against various image processing attacks, such as noise addition, filtering, cropping, and JPEG compression yielding higher normalized correlation values (0.7193 to 1).
본 논문 에서는 Type-2 퍼지 논리 시스템을 설계하고, 불확실한 정보를 갖는 입력 데이터에 대하여 Type-1 퍼지 논리 시스템과 성능을 비교한다. Type-1 퍼지 논리 시스템은 외부 잡음에 민감한 단점을 가지고 있는 반면, Type-2 퍼지 논리 시스템은 불확실한 정보를 잘 표현 할 수 있다. 따라서 Type-2 퍼지 논리 시스템을 이용하여 이러한 단점을 극복하고자 2가지의 모델을 설계한다. 첫 번째 모델은 규칙의 전 후반부가 Type-1 퍼지 집합으로 구성된 Type-1 퍼지 논리 시스템을 설계 한다. 두 번째는 규칙 전 후반부에 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계한다. 여기서 규칙 전반부의 입력 공간 분할 및 FOU(Footprint Of Uncertainty)형성에는 FCM(Fuzzy C_Means) clustering 방법을 사용하고, 입자 군집 최적화(Particle Swarm Optimization) 알고리즘을 사용하여 최적의 파라미터를 설계한다. 본 논문 에서는 또한 입력 데이터에 인위적으로 가하는 노이즈에 따른 각각 모델의 성능을 비교한다. 마지막으로 비선형 모델 평가에 주로 사용되는 NOx 데이터를 제안된 모델에 적용하고, 실험을 통하여 노이즈가 첨가되고, 불확실한 정보를 다루기에 Type-1 퍼지 논리 시스템 보다 Type-2 퍼지 논리 시스템이 효율적이라는 것을 보인다.
For the automatic detection of pulmonary blood vessels, a new algorithm is proposed using the fact that human recognizes a pattern orderly according to their size. This method simulates the human recognition process by the pyramid images. For the detection of vessels using multilevel image, large and wtde ones are detected from the most compressed level, followed by the detection of small and narrow ones from the less compressed images with FCM(fuzzy c means) clustering algorithm which classifies similar data into a group. As the proposed algorithm detects blood vessels orderly according to their size, there is no need to consider the variation of parameters and the branch points which should be considered in other detection algirithms. In the detection of patterns whose size changes successively like pulmonary blood vessels, this proposed algorithm can be properly applied
This study is developed vehicle information detector using loop and piezo sensors. This study would analyze the over all problems concerning our road conditions, environmental matters and unique features of our traffic matters; moreover, with these it would develope the hardware, software, car classification algorithm applied by artificial intelligence and traffic monitoring program which can be easily fixed. This can be divided into traffic detecting algorithm and car classification algorithm. Especially, we have developed the car classification algorithm used by C-means Fuzzy Clustering method.
일반적으로, 퍼지 예측 시스템의 성능은 데이터의 특성과 퍼지 집합을 생성하기 위한 클러스터일 기법에 매우 의존적이다. 하지만, 예측을 위한 시계열 데이터들은 자연현상에 기인하는 강한 비선형적 특성을 가지고 있으므로 적합한 시스템을 구현하는 것에 많은 제약이 따른다. 따라서 본 논문에서는 시계열의 비선형적 특성을 적절히 취급하기 위하여, 그들로부터 생성 가능한 차분 데이터 중, 유효한 차분데이터를 이용하여 다중 모델 퍼지 예측 시스템을 구현함으로써, 보다 우수한 예측이 가능하도록 하였으며, 퍼지 시스템의 모델링에는 교차 상관분석기법에 따른 계층적 구조의 클러스터링 기법 (Hierarchical Cross-correlation and K-means Clustering Algorithms: HCKA)을 적용하여, 시스템을 위한 규칙기반의 적합성을 높일 수 있도록 하였다.
Journal of Institute of Control, Robotics and Systems
/
v.16
no.12
/
pp.1150-1158
/
2010
In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.6
/
pp.735-740
/
2012
In this paper, we introduce design methodologies of polynomial radial basis function neural network classifier with the aid of Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA). By minimizing the information loss of given data, Feature data is obtained through preprocessing of PCA and LDA and then this data is used as input data of RBFNNs. The hidden layer of RBFNNs is built up by Fuzzy C-Mean(FCM) clustering algorithm instead of receptive fields and linear polynomial function is used as connection weights between hidden and output layer. In order to design optimized classifier, the structural and parametric values such as the number of eigenvectors of PCA and LDA, and fuzzification coefficient of FCM algorithm are optimized by Artificial Bee Colony(ABC) optimization algorithm. The proposed classifier is applied to some machine learning datasets and its result is compared with some other classifiers.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.48
no.2
/
pp.125-133
/
2011
For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. As fingerprinting method, k-nearest neighbor(KNN) has been widely applied for indoor location in wireless location area networks(WLAN), but its performance is sensitive to number of neighbors k and positions of reference points(RPs). So intuitive fuzzy c-means(IFCM) clustering algorithm is applied to improve KNN, which is the KNN/IFCM hybrid algorithm presented in this paper. In the proposed algorithm, through KNN, k RPs are firstly chosen as the data samples of IFCM based on signal to noise ratio(SNR). Then, the k RPs are classified into different clusters through IFCM based on SNR. Experimental results indicate that the proposed KNN/IFCM hybrid algorithm generally outperforms KNN, KNN/FCM, KNN/PFCM algorithm when the locations error is less than 2m.
본 논문에서는 배경과 오브젝트 합성 시 사실적인 그림자 효과를 표현하기 위해 HDR 영상을 기반으로 한 소수의 방향성 광원을 추정하는 기법을 제안한다. 실 세계 정보를 모두 포함하는HDR 영상을 가시화 하기 위해 톤 맵핑(tone mapping)하여 그 영상으로부터 광원의 위치가 되는 밝은 영역들을 찾아내고 그 위치들로부터 방향성 광원을 추정한다. 카메라의 노출시간을 짧게 하여 촬영한 영상에서 나타나는 부분을 실제 광원이 위치하는 부분으로 볼 수 있으므로 톤 맵핑한 영상을 이미지 프로세싱을 거쳐 노출 시간을 짧게 하여 촬영한 영상과 비슷한 결과를 얻을 수 있도록 한 후 밝은 영역만 표현 되도록 한다. 전 처리를 거친 영상을 기반으로 밝은 영역을 추정하기 때문에 보다 정확한 광원의 위치 추정이 가능하며, 추정된 밝은 영역과 일치하는 HDR 영상의 데이터를 사용하기 때문에 정확한 광원의 위치와 데이터를 얻을 수 있다. 또한 추정된 광원은 실제 렌더링에 곧바로 사용이 가능하며, 이를 통해 사실적인 shadowing 효과를 얻을 수 있다.
Park Chan-Won;Lee Dae-Jong;Park Sung-Moo;Chun Myung-Geun
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.208-211
/
2006
본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 고장신호를 얻기 위하여 구축하였으며, 취득된 데이터를 이용하여 진단 알고리즘을 구축하였다. 취득된 데이터 중에서 진단을 위해 사용될 훈련데이터는 퍼지 기반 클러스터링 기법을 이용하여 신뢰성 높은 데이터를 선택하여 고장별 신호를 추출하였다. 진단 알고리즘으로는 데이터를 주성분 분석기법을 적용하였으며, 최종 분류를 위해 Euclidean 기반 거리척도 기법을 이용하였다. 다양한 부하 및 고장신호에 대하여 제안된 방법을 적용하여 타당성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.