• Title/Summary/Keyword: fuzzy k-means clustering

Search Result 219, Processing Time 0.039 seconds

Color-Texture Image Watermarking Algorithm Based on Texture Analysis (텍스처 분석 기반 칼라 텍스처 이미지 워터마킹 알고리즘)

  • Kang, Myeongsu;Nguyen, Truc Kim Thi;Nguyen, Dinh Van;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.35-43
    • /
    • 2013
  • As texture images have become prevalent throughout a variety of industrial applications, copyright protection of these images has become important issues. For this reason, this paper proposes a color-texture image watermarking algorithm utilizing texture properties inherent in the image. The proposed algorithm selects suitable blocks to embed a watermark using the energy and homogeneity properties of the grey level co-occurrence matrices as inputs for the fuzzy c-means clustering algorithm. To embed the watermark, we first perform a discrete wavelet transform (DWT) on the selected blocks and choose one of DWT subbands. Then, we embed the watermark into discrete cosine transformed blocks with a gain factor. In this study, we also explore the effects of the DWT subbands and gain factors with respect to the imperceptibility and robustness against various watermarking attacks. Experimental results show that the proposed algorithm achieves higher peak signal-to-noise ratio values (47.66 dB to 48.04 dB) and lower M-SVD values (8.84 to 15.6) when we embedded a watermark into the HH band with a gain factor of 42, which means the proposed algorithm is good enough in terms of imperceptibility. In addition, the proposed algorithm guarantees robustness against various image processing attacks, such as noise addition, filtering, cropping, and JPEG compression yielding higher normalized correlation values (0.7193 to 1).

Design of pRBFNN Based on Interval Type-2 Fuzzy Set (Interval Type-2 퍼지 집합 기반의 pRBFNN 설계)

  • Kim, In-Jae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1871_1872
    • /
    • 2009
  • 본 논문 에서는 Type-2 퍼지 논리 시스템을 설계하고, 불확실한 정보를 갖는 입력 데이터에 대하여 Type-1 퍼지 논리 시스템과 성능을 비교한다. Type-1 퍼지 논리 시스템은 외부 잡음에 민감한 단점을 가지고 있는 반면, Type-2 퍼지 논리 시스템은 불확실한 정보를 잘 표현 할 수 있다. 따라서 Type-2 퍼지 논리 시스템을 이용하여 이러한 단점을 극복하고자 2가지의 모델을 설계한다. 첫 번째 모델은 규칙의 전 후반부가 Type-1 퍼지 집합으로 구성된 Type-1 퍼지 논리 시스템을 설계 한다. 두 번째는 규칙 전 후반부에 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계한다. 여기서 규칙 전반부의 입력 공간 분할 및 FOU(Footprint Of Uncertainty)형성에는 FCM(Fuzzy C_Means) clustering 방법을 사용하고, 입자 군집 최적화(Particle Swarm Optimization) 알고리즘을 사용하여 최적의 파라미터를 설계한다. 본 논문 에서는 또한 입력 데이터에 인위적으로 가하는 노이즈에 따른 각각 모델의 성능을 비교한다. 마지막으로 비선형 모델 평가에 주로 사용되는 NOx 데이터를 제안된 모델에 적용하고, 실험을 통하여 노이즈가 첨가되고, 불확실한 정보를 다루기에 Type-1 퍼지 논리 시스템 보다 Type-2 퍼지 논리 시스템이 효율적이라는 것을 보인다.

  • PDF

A Study on the Detection of Pulmonary Blood Vessel Using Pyramid Images and Fuzzy Theory (피라미드 영상과 퍼지이론을 이용한 폐부 혈관의 검출에 관한 연구)

  • Hwang, Jun-Hyun;Park, Kwang-Suk;Min, Byoung-Gu
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.99-106
    • /
    • 1991
  • For the automatic detection of pulmonary blood vessels, a new algorithm is proposed using the fact that human recognizes a pattern orderly according to their size. This method simulates the human recognition process by the pyramid images. For the detection of vessels using multilevel image, large and wtde ones are detected from the most compressed level, followed by the detection of small and narrow ones from the less compressed images with FCM(fuzzy c means) clustering algorithm which classifies similar data into a group. As the proposed algorithm detects blood vessels orderly according to their size, there is no need to consider the variation of parameters and the branch points which should be considered in other detection algirithms. In the detection of patterns whose size changes successively like pulmonary blood vessels, this proposed algorithm can be properly applied

  • PDF

The Development of the Vehicles Information Detector (Al 기법을 이용한 차량 정보 수집 장비 개발)

  • Moon, Hak-Yong;Ryu, Seung-Ki;Kim, Young-Chun;Byeon, Sang-Cheol;Choi, Do-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1283-1285
    • /
    • 2002
  • This study is developed vehicle information detector using loop and piezo sensors. This study would analyze the over all problems concerning our road conditions, environmental matters and unique features of our traffic matters; moreover, with these it would develope the hardware, software, car classification algorithm applied by artificial intelligence and traffic monitoring program which can be easily fixed. This can be divided into traffic detecting algorithm and car classification algorithm. Especially, we have developed the car classification algorithm used by C-means Fuzzy Clustering method.

  • PDF

Design of Multiple Model Fuzzy Prediction Systems Based on HCKA (HCKA 기반 다중 모델 퍼지 예측 시스템의 구현)

  • Bang, Young-Keun;Shim, Jae-Son;Park, Ha-Yong;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1642_1643
    • /
    • 2009
  • 일반적으로, 퍼지 예측 시스템의 성능은 데이터의 특성과 퍼지 집합을 생성하기 위한 클러스터일 기법에 매우 의존적이다. 하지만, 예측을 위한 시계열 데이터들은 자연현상에 기인하는 강한 비선형적 특성을 가지고 있으므로 적합한 시스템을 구현하는 것에 많은 제약이 따른다. 따라서 본 논문에서는 시계열의 비선형적 특성을 적절히 취급하기 위하여, 그들로부터 생성 가능한 차분 데이터 중, 유효한 차분데이터를 이용하여 다중 모델 퍼지 예측 시스템을 구현함으로써, 보다 우수한 예측이 가능하도록 하였으며, 퍼지 시스템의 모델링에는 교차 상관분석기법에 따른 계층적 구조의 클러스터링 기법 (Hierarchical Cross-correlation and K-means Clustering Algorithms: HCKA)을 적용하여, 시스템을 위한 규칙기반의 적합성을 높일 수 있도록 하였다.

  • PDF

A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image (실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Seok, Jin-Wook;Kim, Ki-Sang;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis (주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.735-740
    • /
    • 2012
  • In this paper, we introduce design methodologies of polynomial radial basis function neural network classifier with the aid of Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA). By minimizing the information loss of given data, Feature data is obtained through preprocessing of PCA and LDA and then this data is used as input data of RBFNNs. The hidden layer of RBFNNs is built up by Fuzzy C-Mean(FCM) clustering algorithm instead of receptive fields and linear polynomial function is used as connection weights between hidden and output layer. In order to design optimized classifier, the structural and parametric values such as the number of eigenvectors of PCA and LDA, and fuzzification coefficient of FCM algorithm are optimized by Artificial Bee Colony(ABC) optimization algorithm. The proposed classifier is applied to some machine learning datasets and its result is compared with some other classifiers.

Optimized KNN/IFCM Algorithm for Efficient Indoor Location (효율적인 실내 측위를 위한 최적화된 KNN/IFCM 알고리즘)

  • Lee, Jang-Jae;Song, Lick-Ho;Kim, Jong-Hwa;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.125-133
    • /
    • 2011
  • For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. As fingerprinting method, k-nearest neighbor(KNN) has been widely applied for indoor location in wireless location area networks(WLAN), but its performance is sensitive to number of neighbors k and positions of reference points(RPs). So intuitive fuzzy c-means(IFCM) clustering algorithm is applied to improve KNN, which is the KNN/IFCM hybrid algorithm presented in this paper. In the proposed algorithm, through KNN, k RPs are firstly chosen as the data samples of IFCM based on signal to noise ratio(SNR). Then, the k RPs are classified into different clusters through IFCM based on SNR. Experimental results indicate that the proposed KNN/IFCM hybrid algorithm generally outperforms KNN, KNN/FCM, KNN/PFCM algorithm when the locations error is less than 2m.

Lighting Source Estimation from Real World Illumination for Realistic Shadowing (사실적인 shadow 표현을 위한 HDR 영상 기반 광원 추정)

  • Yoo, Jae-Doug;Dachuri, Naveen;Kim, Kang-Yeon;Lee, Kwan-H.
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1277-1282
    • /
    • 2006
  • 본 논문에서는 배경과 오브젝트 합성 시 사실적인 그림자 효과를 표현하기 위해 HDR 영상을 기반으로 한 소수의 방향성 광원을 추정하는 기법을 제안한다. 실 세계 정보를 모두 포함하는HDR 영상을 가시화 하기 위해 톤 맵핑(tone mapping)하여 그 영상으로부터 광원의 위치가 되는 밝은 영역들을 찾아내고 그 위치들로부터 방향성 광원을 추정한다. 카메라의 노출시간을 짧게 하여 촬영한 영상에서 나타나는 부분을 실제 광원이 위치하는 부분으로 볼 수 있으므로 톤 맵핑한 영상을 이미지 프로세싱을 거쳐 노출 시간을 짧게 하여 촬영한 영상과 비슷한 결과를 얻을 수 있도록 한 후 밝은 영역만 표현 되도록 한다. 전 처리를 거친 영상을 기반으로 밝은 영역을 추정하기 때문에 보다 정확한 광원의 위치 추정이 가능하며, 추정된 밝은 영역과 일치하는 HDR 영상의 데이터를 사용하기 때문에 정확한 광원의 위치와 데이터를 얻을 수 있다. 또한 추정된 광원은 실제 렌더링에 곧바로 사용이 가능하며, 이를 통해 사실적인 shadowing 효과를 얻을 수 있다.

  • PDF

Fault Diagnosis of Induction Motor Using Clustering and Principal Component Analysis (클러스터링과 주성분 분석기법을 이용한 유도전동기 고장진단)

  • Park Chan-Won;Lee Dae-Jong;Park Sung-Moo;Chun Myung-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.208-211
    • /
    • 2006
  • 본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 고장신호를 얻기 위하여 구축하였으며, 취득된 데이터를 이용하여 진단 알고리즘을 구축하였다. 취득된 데이터 중에서 진단을 위해 사용될 훈련데이터는 퍼지 기반 클러스터링 기법을 이용하여 신뢰성 높은 데이터를 선택하여 고장별 신호를 추출하였다. 진단 알고리즘으로는 데이터를 주성분 분석기법을 적용하였으며, 최종 분류를 위해 Euclidean 기반 거리척도 기법을 이용하였다. 다양한 부하 및 고장신호에 대하여 제안된 방법을 적용하여 타당성을 검증하였다.

  • PDF