• 제목/요약/키워드: fuzzy input-output

검색결과 574건 처리시간 0.026초

선박조타의 TSK 퍼지 비선형제어시스템 설계 (Design of TSK Fuzzy Nonlinear Control System for Ship Steering)

  • 채양범;이원창;강근택
    • 한국항해항만학회지
    • /
    • 제26권2호
    • /
    • pp.193-197
    • /
    • 2002
  • 선박 조종방정식의 비선형 요소를 고려한 선박의 자동조타시스템의 제어기를 설계하기 위하여 TSK (Takagj-Sugeno-Kang) 퍼지 이론을 이용하였다. TSK 퍼지모델은 비선형 시스템을 매우 효율적으로 표현할 수 있으며, 또 TSK 퍼지모델은 결론부가 선형식으로 이뤄져 있어 체계적인 제어기 설계가 가능하다. 따라서 본 연구에서는 선박의 조종방정식을 TSK 퍼지모델로 표현하는 방법과 그 모델로부터 체계적으로 TSK 퍼지제어기를 설계하는 방법을 설명한다.

상대 이득 행렬을 이용한 뉴로-퍼지 제어기의 설계 (Design of Neuro-Fuzzy Controller using Relative Gain Matrix)

  • 서삼준;김동원;박귀태
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.24-29
    • /
    • 2005
  • 일반적으로 다변수 계통에 대한 퍼지 제어에서 퍼지 규칙을 얻기가 어려워 입출력 사이의 페어링을 이용한 독립적인 단일 입력 단일 출력의 병렬 구조를 이용한다. 그러나, 결합되지 않은 입출력 변수간의 상호작용으로 제어 성능에 나쁜 영향을 준다. 특히, 강한 결합 특성을 가진 계통의 경우 제어 성능을 아주 저하시킨다. 본 논문에서는 이러한 상호작용에 의한 영향을 보상해주기 위해 상대 이득 행렬을 이용한 신경 회로망을 도입하였다 제안한 뉴로 퍼지 제어기는 역전파 알고리즘으로 학습되며 강호작용에 대한 결합강도를 자동으로 조정하여준다. 제안한 뉴로 퍼지 제어기의 성능을 200MW급 보일러 계통에 대한 컴퓨터 모의실험을 통해 입증하였다.

다중 퍼지 로직 제어기를 이용한 다변수 시스템의 제어 (Control of MIMO System Using Multiple Fuzzy Logic Controller)

  • 서호준;서삼준;김동식;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1076-1078
    • /
    • 1996
  • In this paper, we design the robust controller for MIMO system using multiple fuzzy logic controller. Based on the knowledge of system input/output data, we introduce the simple adaptation laws to approximate the decoupling matrix from input channel to output channel. The proposed control algorithm is applied numerical example.

  • PDF

Estimating Fuzzy Regression with Crisp Input-Output Using Quadratic Loss Support Vector Machine

  • 황창하;홍덕헌;이상복
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2004년도 추계학술대회
    • /
    • pp.53-59
    • /
    • 2004
  • Support vector machine(SVM) approach to regression can be found in information science literature. SVM implements the regularization technique which has been introduced as a way of controlling the smoothness properties of regression function. In this paper, we propose a new estimation method based on quadratic loss SVM for a linear fuzzy regression model of Tanaka's, and furthermore propose a estimation method for nonlinear fuzzy regression. This approach is a very attractive approach to evaluate nonlinear fuzzy model with crisp input and output data.

  • PDF

영상 기반 로붓 제어 시스템을 위한 벡터 양자화 최적 퍼지 시스템 설계 (A Design of Vector Quantization Optimal Fuzzy Systems for Vision-Based Robot Control Systems)

  • 김영중;김영락;김범수;임묘택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2447-2449
    • /
    • 2003
  • In this paper, optimal fuzzy systems using vector quantization and fuzzy logic controllers are designed for vision-based robot control systems. The complexity of the optimal fuzzy system for vision-based control systems is so great that it can not be applied to real vision-based control systems or it can not be useful, because there are so many input-output pairs. Therefore, we generally use the clustering of input-output pairs, in order to reduce the complexity of optimal fuzzy systems. To increase the effectiveness of the clustering, a vector quantization clustering method is proposed. In order to verify the effectiveness of the proposed method experimentally, it is applied to a vision-based arm robot control system.

  • PDF

헬리콥터의 적응 퍼지제어 (Adaptive Fuzzy Control of Helicopter)

  • 김종화;장용줄;이원창;강근택
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.144-147
    • /
    • 2001
  • This paper presents adaptive fuzzy controller which is uncertainty or unknown variation in different parameters with nonlinear system of helicopter. The proposed adaptive fuzzy controller applied TSK(Takagi-Sugeno-Kang) fuzzy system which is not only low number of fuzzy rule, and a linear input-output equation with a constant term, but also can represent a large class of nonlinear system with good accuracy. The adaptive law was designed by using Lyapunov stability theory. The adaptive fuzzy controller is a model reference adaptive controller which can adjust the parameter $\theta$ so that the plant output tracks the reference model output. First of all, system of helicopter was considered as stopping state, and design of controller was simulated from dynamics equation with stopping state. Results show that it is controlled more successfully with a model reference adaptive controller than with a non-adaptive fuzzy controller when there is a modelling error between system and model or a continuous added noise in such unstable system.

  • PDF

퍼지모델을 이용한 비선형 공정의 적응 모델예측제어에 관한 연구 (A Study on an Adaptive Model Predictive Control for Nonlinear Processes using Fuzzy Model)

  • 박종진;우광방
    • 한국지능시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.97-105
    • /
    • 1996
  • 본 논문에서는 퍼지모델을 이용한 비선형 공정의 적응모델예측제어가 제안된다. 모델예측제어의 저긍구조는 순환 퍼지모델링을 통해 구현된다. 사용된 퍼지모델의 후건부가 입, 출력 변수의 선형식이기 때문에, 전체 공정의 모델을 구하고 이를 이용하여 미래 공정출력을 구한 후 비용함수를 최로로하는 제어법칙은 일반형 예측제어(GPC)와 같은 형태가 된다. 제안된 적응 퍼지모델 예측제어는 퍼지모델이 가지는 본래적인 비선형성으로 인해 비선형공정을 우수한 성능으로 제어한다. 공정제어입력의 변화량을 출력값으로 하는 적응 퍼지모델 예측제어(AFMPC)인 경우, 상수의 기준입력에 대해 정상상태가 없고 매우 우수한 성능을 보인다. 제안된 제어구조의 특성 및 성은 비선형 공정의 모의 실험에 의해 검증한다.

  • PDF

New Fuzzy Inference System Using a Kernel-based Method

  • Kim, Jong-Cheol;Won, Sang-Chul;Suga, Yasuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2393-2398
    • /
    • 2003
  • In this paper, we proposes a new fuzzy inference system for modeling nonlinear systems given input and output data. In the suggested fuzzy inference system, the number of fuzzy rules and parameter values of membership functions are automatically decided by using the kernel-based method. The kernel-based method individually performs linear transformation and kernel mapping. Linear transformation projects input space into linearly transformed input space. Kernel mapping projects linearly transformed input space into high dimensional feature space. The structure of the proposed fuzzy inference system is equal to a Takagi-Sugeno fuzzy model whose input variables are weighted linear combinations of input variables. In addition, the number of fuzzy rules can be reduced under the condition of optimizing a given criterion by adjusting linear transformation matrix and parameter values of kernel functions using the gradient descent method. Once a structure is selected, coefficients in consequent part are determined by the least square method. Simulated result illustrates the effectiveness of the proposed technique.

  • PDF

Simulator Output Knowledge Analysis Using Neural network Approach : A Broadand Network Desing Example

  • Kim, Gil-Jo;Park, Sung-Joo
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1994년도 추계학술발표회 및 정기총회
    • /
    • pp.12-12
    • /
    • 1994
  • Simulation output knowledge analysis is one of problem-solving and/or knowledge adquistion process by investgating the system behavior under study through simulation . This paper describes an approach to simulation outputknowldege analysis using fuzzy neural network model. A fuzzy neral network model is designed with fuzzy setsand membership functions for variables of simulation model. The relationship between input parameters and output performances of simulation model is captured as system behavior knowlege in a fuzzy neural networkmodel by training examples form simulation exepreiments. Backpropagation learning algorithms is used to encode the knowledge. The knowledge is utilized to solve problem through simulation such as system performance prodiction and goal-directed analysis. For explicit knowledge acquisition, production rules are extracted from the implicit neural network knowledge. These rules may assit in explaining the simulation results and providing knowledge base for an expert system. This approach thus enablesboth symbolic and numeric reasoning to solve problem througth simulation . We applied this approach to the design problem of broadband communication network.

  • PDF

퍼지의사결정을 이용한 RC구조물의 건전성평가 (Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making)

  • 박철수;손용우;이증빈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.274-283
    • /
    • 2002
  • This paper presents an efficient models for reinforeced concrete structures using CART-ANFIS(classification and regression tree-adaptive neuro fuzzy inference system). a fuzzy decision tree parttitions the input space of a data set into mutually exclusive regions, each of which is assigned a label, a value, or an action to characterize its data points. Fuzzy decision trees used for classification problems are often called fuzzy classification trees, and each terminal node contains a label that indicates the predicted class of a given feature vector. In the same vein, decision trees used for regression problems are often called fuzzy regression trees, and the terminal node labels may be constants or equations that specify the Predicted output value of a given input vector. Note that CART can select relevant inputs and do tree partitioning of the input space, while ANFIS refines the regression and makes it everywhere continuous and smooth. Thus it can be seen that CART and ANFIS are complementary and their combination constitutes a solid approach to fuzzy modeling.

  • PDF