• Title/Summary/Keyword: fuzzy inference type

Search Result 124, Processing Time 0.029 seconds

Multi-Sensor Data Fusion Model that Uses a B-Spline Fuzzy Inference System

  • Lee, K.S.;S.W. Shin;D.S. Ahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.3-23
    • /
    • 2001
  • The main object of this work is the development of an intelligent multi-sensor integration and fusion model that uses fuzzy inference system. Sensor data from different types of sensors are integrated and fused together based on the confidence which is not typically used in traditional data fusion methods. The information is fed as input to a fuzzy inference system(FIS). The output of the FIS is weights that are assigned to the different sensor data reflecting the confidence En the sensor´s behavior and performance. We interpret a type of fuzzy inference system as an interpolator of B-spline hypersurfaces. B-spline basis functions of different orders are regarded as a class of membership functions. This paper presents a model that ...

  • PDF

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF

A fuzzy model of human performance for VDU workers (VDU작업자의 작업수행도에 대한 퍼지모형)

  • ;;;神代雅晴
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.97-104
    • /
    • 1995
  • The widespread use of VDU has improved the efficiency of information transmission between man and machine, but has caused new occupational health and ergonomics problems. In this study, we tried to construct a fuzzy hyman performance model of VDU workers in Korea. Fuzzy inferences of human perfor- mance are obtained from the fuzzy inference rule with the job difficulty, CFF, SACL, Type A. and the degree of concentration in VDU work. Eight healthy female undergraduate students at Kyungnam university for subjects aged 20 to 23 years were examined in this experiment. They calculated continuous addition, subtraction, and multiplication of 1 or 2 digit numbers that were produced randomly on the CRT. Subjects peoformed two types of a numeric operation, which easy and difficult work produced 400 and 600 problems within a 40 minute work session, respectively. Subjects were tested over two workdays according to the type of work(easy and difficult) consisting of four 40 minutes work sessions in the morning. Each work lasted for five minutes with a ten minutes rest break. 117 fuzzy inference rules were obtained from the experimental data. The value of consequent part was obtained by a descent method. The difference between real human error and estimated value of fuzzy inference was $1.8075{\pm}1.8591%(M{\pm}SD)$. The difference in easy and diffcult works were $2.69{\pm}2.13%$ and $0.92{\pm}0.93%$, respectively.

  • PDF

Classification of Korean Character Type using Multi Neural Network and Fuzzy Inference based on Block Partition for Each Type (형식별 블럭분할에 기초한 다중신경망과 퍼지추론에 의한 한글 형식분류)

  • Pyeon, Seok-Beom;Park, Jong-An
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.5-11
    • /
    • 1994
  • In this paper, the ciassification of Korean character type using multi neural network and fuzzy inference based on block partition is studied. For the effective classification of a consonant and a vowel, block partition method which devide the region of a consonant and a vowel for each type in the character is proposed. And the partitioned block can be changed according to the each type adaptively. For the improvement of classification rate, the multi neural network with a whole and a part neural network is consisted, and the character type by using fuzzy inference is decided. To verify the validity of the proposed method, computer simulation is accomplished, and from the classification rate $92.6\%$, the effectivity of the method is confirmed.

  • PDF

Positioning Accuracy Improvement of Analog-type Magnetic Positioning System using Fuzzy Inference System (퍼지 추론 시스템을 이용한 아날로그형 자기위치 장치의 위치 정밀도 향상)

  • Kim, Jung-Min;Jung, Kyung-Hoon;Jung, Eun-Kook;Cho, Hyun-Hak;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.367-372
    • /
    • 2012
  • This paper presents a development of an analog type magnetic positioning system and its positioning accuracy improvement using fuzzy inference system. As the magnetic positioning system used on a magnet-gyro guidance system for AGV(automatic guided vehicle), it measures a position of magnet embedded in floor of the work place. The existing product of the magnetic positioning system is very expensive in Korea because it is being sold in a foreign country exclusively. Moreover, the positioning accuracy of the product is low because it uses digital type unipolar hall sensors. Hence, we developed the magnetic positioning system by ourselves and improved the positioning accuracy of the developed magnetic positioning system using fuzzy inference system. For experiment, we used the analog type magnetic positioning system which we have developed, and compared the performance of the proposed method with the performance of the existing positioning method for the magnetic positioning system. In experimental results, we verified that the proposed method improved the positioning accuracy of the magnetic positioning system.

Cloud-Type Classification by Two-Layered Fuzzy Logic

  • Kim, Kwang Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Cloud detection and analysis from satellite images has been a topic of research in many atmospheric and environmental studies; however, it still is a challenging task for many reasons. In this paper, we propose a new method for cloud-type classification using fuzzy logic. Knowing that visible-light images of clouds contain thickness related information, while infrared images haves height-related information, we propose a two-layered fuzzy logic based on the input source to provide us with a relatively clear-cut threshold in classification. Traditional noise-removal methods that use reflection/release characteristics of infrared images often produce false positive cloud areas, such as fog thereby it negatively affecting the classification accuracy. In this study, we used the color information from source images to extract the region of interest while avoiding false positives. The structure of fuzzy inference was also changed, because we utilized three types of source images: visible-light, infrared, and near-infrared images. When a cloud appears in both the visible-light image and the infrared image, the fuzzy membership function has a different form. Therefore we designed two sets of fuzzy inference rules and related classification rules. In our experiment, the proposed method was verified to be efficient and more accurate than the previous fuzzy logic attempt that used infrared image features.

A Study on Damping Improvement of a Synchronous Generator with Static VAR Compensator using a Fuzzy-PI Controller (퍼지-PI 제어기를 이용하여 정지형 무효전력 보상기를 포함한 동기 발전기의 안정도 개선에 관한 연구)

  • 주석민;허동렬;김상효;정동일;정형환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.57-66
    • /
    • 2001
  • This paper resents a control approach for designing a fuzzy-PI controller for a synchronous generator excitation and SVC system A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the must fiexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage A Fuzzy-PI controller for SVC system was proposed in this paper. The PI gain parameters of the proposed Fuzzy-PI controller which is a special type of PI ones are self-tuned by fuzzy inference technique. It is natural that the fuzzy inference technique should be barred on humans intuitions and empirical knowledge. Nonetheless, the conventional ones were not so. Therefore, In this paper, the fuzzy inference technique of PI gains using MMGM(Min Max Gravity Method) which is very similar to humans inference procedures, was presented and allied to the SVC system. The system dynamic responses are examined after applying all small disturbance condition.

  • PDF

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.

Advanced Self-Organizing Neural Networks Based on Competitive Fuzzy Polynomial Neurons (경쟁적 퍼지다항식 뉴런에 기초한 고급 자기구성 뉴럴네트워크)

  • 박호성;박건준;이동윤;오성권
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.135-144
    • /
    • 2004
  • In this paper, we propose competitive fuzzy polynomial neurons-based advanced Self-Organizing Neural Networks(SONN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. The proposed SONN dwells on the ideas of fuzzy rule-based computing and neural networks. And it consists of layers with activation nodes based on fuzzy inference rules and regression polynomial. Each activation node is presented as Fuzzy Polynomial Neuron(FPN) which includes either the simplified or regression polynomial fuzzy inference rules. As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership (unction are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SONN architectures, that is, the basic and modified one with both the generic and the advanced type. Here the basic and modified architecture depend on the number of input variables and the order of polynomial in each layer. The number of the layers and the nodes in each layer of the SONN are not predetermined, unlike in the case of the popular multi-layer perceptron structure, but these are generated in a dynamic way. The superiority and effectiveness of the Proposed SONN architecture is demonstrated through two representative numerical examples.

A Study on Optimal fuzzy Systems by Means of Hybrid Identification Algorithm (하이브리드 동정 알고리즘에 의한 최적 퍼지 시스템에 관한 연구)

  • 오성권
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.555-565
    • /
    • 1999
  • The optimal identification algorithm of fuzzy systems is presented for rule-based fuzzy modeling of nonlinear complex systems. Nonlinear systems are expressed using the identification of structure such as input variables and fuzzy input subspaces, and parameters of a fuzzy model. In this paper, the rule-based fuzzy modeling implements system structure and parameter identification using the fuzzy inference methods and hybrid structure combined with two types of optimization theories for nonlinear systems. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. The proposed hybrid optimal identification algorithm is carried out using both a genetic algorithm and the improved complex method. Here, a genetic algorithm is utilized for determining initial parameters of membership function of premise fuzzy rules, and the improved complex method which is a powerful auto-tuning algorithm is carried out to obtain fine parameters of membership function. Accordingly, in order to optimize fuzzy model, we use the optimal algorithm with a hybrid type for the identification of premise parameters and standard least square method for the identification of consequence parameters of a fuzzy model. Also, an aggregate performance index with weighting factor is proposed to achieve a balance between performance results of fuzzy model produced for the training and testing data. Two numerical examples are used to evaluate the performance of the proposed model.

  • PDF