• Title/Summary/Keyword: fuzzy granulation

Search Result 47, Processing Time 0.026 seconds

Optimal Design of Fuzzy Inference System Based on Information Granulation and Particle Swarm Optimization (IG와 PSO기반 퍼지추론 시스템의 최적 설계)

  • Kim, Wook-Dong;Lee, Dong-Jin;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1865_1866
    • /
    • 2009
  • 본 연구에서는 복잡하고 비선형 시스템의 모델을 동정하기 위해 Information Granulation에 기반한 퍼지추론 시스템의 새로운 범주를 소개한다. Information Granulation은 근접성, 유사성 EH는 기능성 등에 인하여 서로 결합되는 대상(특히, 데이터)의 연결된 모임으로 간주된다. HCM클러스터링에 의한 Information Granulation은 퍼지 규칙의 전반부 및 후반부에서 사용되는 멤버쉽 함수의 초기 정점과 다항식함수의 초기 값과 같은 퍼지 모델의 초기 파라미터를 결정하는데 도움을 준다. 그리고 초기 파라미터는 PSO 알고리즘과 최소자승법에 의해 효과적으로 동조된다. 제안된 모델은 Box와 jenkins가 사용한 가스로 공정[6]을 모델링하여 기존 퍼지 모델링 방법과 비교 평가한다.

  • PDF

A Study on Genetically Optimized Fuzzy Set-based Polynomial Neural Networks (진화이론을 이용한 최적화 Fuzzy Set-based Polynomial Neural Networks에 관한 연구)

  • Rho, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.346-348
    • /
    • 2004
  • In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.

  • PDF

Granule-based Association Rule Mining for Big Data Recommendation System (빅데이터 추천시스템을 위한 과립기반 연관규칙 마이닝)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.67-72
    • /
    • 2021
  • Association rule mining is a method of showing the relationship between patterns hidden in several tables. These days, granulation logic is used to add more detailed meaning to association rule mining. In addition, unlike the existing system that recommends using existing data, the granulation related rules can also recommend new subscribers or new products. Therefore, determining the qualitative size of the granulation of the association rule determines the performance of the recommendation system. In this paper, we propose a granulation method for subscribers and movie data using fuzzy logic and Shannon entropy concepts in order to understand the relationship to the movie evaluated by the viewers. The research is composed of two stages: 1) Identifying the size of granulation of data, which plays a decisive role in the implications of the association rules between viewers and movies; 2) Mining the association rules between viewers and movies using these granulations. We preprocessed Netflix's MovieLens data. The results of meanings of association rules and accuracy of recommendation are suggested with managerial implications in conclusion section.

DCClass: a Tool to Extract Human Understandable Fuzzy Information Granules for Classification

  • Castellano, Giovanna;Fanelli, Anna M.;Mencar, Corrado
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.376-379
    • /
    • 2003
  • In this paper we describe DCClass, a tool for fuzzy information granulation with transparency constraints. The tool is particularly suited to solve fuzzy classification problems, since it is able to automatically extract information granules with class labels. For transparency pursuits, the resulting information granules are represented in form of fuzzy Cartesian product of one-dimensional fuzzy sets. As a key feature, the proposed tool is capable to self-determining the optimal granularity level of each one-dimensional fuzzy set by exploiting class information. The resulting fun information granules can be directly translated in human-comprehensible fuzzy rules to be used for class inference. The paper reports preliminary experimental results on a medical diagnosis problem that shows the utility of the proposed tool.

  • PDF

A Simultaneous Design of TSK - Linguistic Fuzzy Models with Uncertain Fuzzy Output

  • Kwak, Keun-Chang;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.427-432
    • /
    • 2005
  • This paper is concerned with a simultaneous design of TSK (Takagi-Sugeno-Kang)-linguistic fuzzy models with uncertain model output and the computationally efficient representation. For this purpose, we use the fundamental idea of linguistic models introduced by Pedrycz and develop their comprehensive design framework. The design process consists of several main phases such as (a) the automatic generation of the linguistic contexts by probabilistic distribution using CDF (conditional density function) and PDF (probability density function) (b) performing context-based fuzzy clustering preserving homogeneity based on the concept of fuzzy granulation (c) augment of bias term to compensate bias error (d) combination of TSK and linguistic context in the consequent part. Finally, we contrast the performance of the enhanced models with other fuzzy models for automobile MPG predication data and coagulant dosing process in a water purification plant.

  • PDF

A Fuzzy Modeling Approach for a Spray Drying Production Process

  • Aburas Hani Mohammad A.
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.873-879
    • /
    • 2004
  • In all major industries ranging from powder industries and advanced ceramics, to the food and pharmaceutical manufacture powder industries, the main production process is the spray dryers. In this paper, a systematic approach is used and six rules are obtained for the basis of the fuzzy model. A fuzzy model is based on the past behavior of the target system and expected to be able to reproduce the behavior of the target system. The output of the developed fuzzy model shows, graphically and statistically, a high level of face validity. Therefore, it is concluded that the developed fuzzy model mimics the actual process and can be considered, with confidence, as a reliable model to study, analyze, and improve the existing process.

Design of Fuzzy Models with the Aid of an Improved Differential Evolution (개선된 미분 진화 알고리즘에 의한 퍼지 모델의 설계)

  • Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.399-404
    • /
    • 2012
  • Evolutionary algorithms such as genetic algorithm (GA) have been proven their effectiveness when applying to the design of fuzzy models. However, it tends to suffer from computationally expensWive due to the slow convergence speed. In this study, we propose an approach to develop fuzzy models by means of an improved differential evolution (IDE) to overcome this limitation. The improved differential evolution (IDE) is realized by means of an orthogonal approach and differential evolution. With the invoking orthogonal method, the IDE can search the solution space more efficiently. In the design of fuzzy models, we concern two mechanisms, namely structure identification and parameter estimation. The structure identification is supported by the IDE and C-Means while the parameter estimation is realized via IDE and a standard least square error method. Experimental studies demonstrate that the proposed model leads to improved performance. The proposed model is also contrasted with the quality of some fuzzy models already reported in the literature.

Evolutionary Design Methodology of Fuzzy Set-based Polynomial Neural Networks with the Information Granule

  • Roh Seok-Beom;Ahn Tae-Chon;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.301-304
    • /
    • 2005
  • In this paper, we propose a new fuzzy set-based polynomial neuron (FSPN) involving the information granule, and new fuzzy-neural networks - Fuzzy Set based Polynomial Neural Networks (FSPNN). We have developed a design methodology (genetic optimization using Genetic Algorithms) to find the optimal structure for fuzzy-neural networks that expanded from Group Method of Data Handling (GMDH). It is the number of input variables, the order of the polynomial, the number of membership functions, and a collection of the specific subset of input variables that are the parameters of FSPNN fixed by aid of genetic optimization that has search capability to find the optimal solution on the solution space. We have been interested in the architecture of fuzzy rules that mimic the real world, namely sub-model (node) composing the fuzzy-neural networks. We adopt fuzzy set-based fuzzy rules as substitute for fuzzy relation-based fuzzy rules and apply the concept of Information Granulation to the proposed fuzzy set-based rules.

  • PDF

Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation (정보 입자화를 통한 방사형 기저 함수 기반 다항식 신경 회로망의 진화론적 설계)

  • Park, Ho-Sung;Jin, Yong-Ha;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.862-870
    • /
    • 2011
  • In this paper, we introduce a new topology of Radial Basis Function-based Polynomial Neural Networks (RPNN) that is based on a genetically optimized multi-layer perceptron with Radial Polynomial Neurons (RPNs). This study offers a comprehensive design methodology involving mechanisms of optimization algorithms, especially Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization (PSO) algorithms. In contrast to the typical architectures encountered in Polynomial Neural Networks (PNNs), our main objective is to develop a design strategy of RPNNs as follows : (a) The architecture of the proposed network consists of Radial Polynomial Neurons (RPNs). In here, the RPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Fuzzy C-Means (FCM) clustering method. The RPN dwells on the concepts of a collection of radial basis function and the function-based nonlinear (polynomial) processing. (b) The PSO-based design procedure being applied at each layer of RPNN leads to the selection of preferred nodes of the network (RPNs) whose local characteristics (such as the number of input variables, a collection of the specific subset of input variables, the order of the polynomial, and the number of clusters as well as a fuzzification coefficient in the FCM clustering) can be easily adjusted. The performance of the RPNN is quantified through the experimentation where we use a number of modeling benchmarks - NOx emission process data of gas turbine power plant and learning machine data(Automobile Miles Per Gallon Data) already experimented with in fuzzy or neurofuzzy modeling. A comparative analysis reveals that the proposed RPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

Optimization of IG_based Fuzzy Set Fuzzy Model by Means of Adaptive Hierarchical Fair Competition-based Genetic Algorithms (적응형 계층적 공정 경쟁 유전자 알고리즘을 이용한 정보입자 기반 퍼지집합 퍼지모델의 최적화)

  • Choe, Jeong-Nae;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.366-369
    • /
    • 2006
  • 본 논문에서는 계층적 공정 경쟁 유전자 알고리즘을 통한 비선형시스템의 정보입자 기반 퍼지집합 퍼지집합 모델의 최적화 방법을 제안한다. 퍼지집합 모델은 주로 전문가의 경험에 기반을 두어 얻어지기 때문에 동정과 최적화 과정이 필요하며 GAs를 이용하여 퍼지모델을 최적화한 연구가 많이 있다. GAs는 전역 해를 찾을 수 있는 최적화 알고리즘으로 잘 알려져 있지만 조기 수렴 문제를 포함하고 있다. 병렬유전자 알고리즘(PGA)은 조기수렴를 더디게 하고 전역 해를 찾기 위한 진화알고리즘이다. 적응형 계층적 공정 경쟁기반 유전자 알고리즘(AHFCGA)을 이용하여 퍼지모델의 입력변수, 멤버쉽함수의 수, 멤버쉽함수의 정점 등의 전반부 구조와 파라미터를 동정하였고, LSE를 사용하여 후반부 파라미터를 동정하였으며 실험적 예제를 통하여 제안된 방법의 성능을 평가한다.

  • PDF