• Title/Summary/Keyword: fuzzy evaluation model

Search Result 289, Processing Time 0.024 seconds

The Performance Improvement of Excitation System using Robust Control with DATABASE

  • Hong, Hyun-Mun;Jeon, Byeong-Seok;Kim, Jong-Gun;Lee, Sang-Hyuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.83-87
    • /
    • 2005
  • This paper deals with the design and evaluation of the robust controller for a synchronous generator excitation system to improve the steady state and transient stability. The nonlinear characteristics of the system is treated as model uncertainties, and then the robust control techniques are introduced into the power system stability design to take into account these uncertainties at the controller design stage. The performance of the designed controller is examined by extensive non-linear time domain simulation. It is shown that the performance of the robust controller is superior to that of the conventional PI controller. This paper also proposes an improved digital exciter control system for a synchronized generator using a digitally designed controller with database. Results show that the proposed control system manifests excellent control performance compared to existing control systems. It has also been confirmed that it is easy for the proposed control system to implement digital control.

A Hybrid QFD Framework for New Product Development

  • Tsai, Y-C;Chin, K-S;Yang, J-B
    • International Journal of Quality Innovation
    • /
    • v.3 no.2
    • /
    • pp.138-158
    • /
    • 2002
  • Nowadays, new product development (NPD) is one of the most crucial factors for business success. The manufacturing firms cannot afford the resources in the long development cycle and the costly redesigns. Good product planning is crucial to ensure the success of NPD, while the Quality Function deployment (QFD) is an effective tool to help the decision makers to determine appropriate product specifications in the product planning stage. Traditionally, in the QFD, the product specifications are determined by a rather subjective evaluation, which is based on the knowledge and experience of the decision makers. In this paper, the traditional QFD methodology is firstly reviewed. An improved Hybrid Quality Function Deployment (HQFD) [MSOfficel] then presented to tackle the shortcomings of traditional QFD methodologies in determining the engineering characteristics. A structured questionnaire to collect and analyze the customer requirements, a methodology to establish a QFD record base and effective case retrieval, and a model to more objectively determine the target values of engineering characteristics are also described.

Extended cognitive reliability and error analysis method for advanced control rooms of nuclear power plants

  • Xiaodan Zhang;Shengyuan Yan;Xin Liu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3472-3482
    • /
    • 2024
  • This study proposes a modified extended cognitive reliability and error analysis method (CREAM) for achieving a more accurate human error probability (HEP) in advanced control rooms. The traditional approach lacks failure data and does not consider the common performance condition (CPC) weights in different cognitive functions. The modified extended CREAM decomposes tasks using a method that combines structured information analysis (SIA) and the extended CREAM. The modified extended CREAM performs the weight analysis of CPCs in different cognitive functions, and the weights include cognitive, correlative, and important weights. We used the extended CREAM to obtain the cognitive weight. We determined the correlative weights of the CPCs for different cognitive functions using the triangular fuzzy decision-making trial and evaluation laboratory (TF-DEMATEL), and evaluated the importance weight of CPCs based on the interval 2-tuple linguistic approach and ensured the value of the importance weight using the entropy method in the different cognitive functions. Finally, we obtained the comprehensive weights of the different cognitive functions and calculated the HEPs. The accuracy and sensitivity of the modified extended CREAM were compared with those of the basic CREAM. The results demonstrate that the modified extended CREAM calculates the HEP more effectively in advanced control rooms.

Fuzzy discretization with spatial distribution of data and Its application to feature selection (데이터의 공간적 분포를 고려한 퍼지 이산화와 특징선택에의 응용)

  • Son, Chang-Sik;Shin, A-Mi;Lee, In-Hee;Park, Hee-Joon;Park, Hyoung-Seob;Kim, Yoon-Nyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2010
  • In clinical data minig, choosing the optimal subset of features is such important, not only to reduce the computational complexity but also to improve the usefulness of the model constructed from the given data. Moreover the threshold values (i.e., cut-off points) of selected features are used in a clinical decision criteria of experts for differential diagnosis of diseases. In this paper, we propose a fuzzy discretization approach, which is evaluated by measuring the degree of separation of redundant attribute values in overlapping region, based on spatial distribution of data with continuous attributes. The weighted average of the redundant attribute values is then used to determine the threshold value for each feature and rough set theory is utilized to select a subset of relevant features from the overall features. To verify the validity of the proposed method, we compared experimental results, which applied to classification problem using 668 patients with a chief complaint of dyspnea, based on three discretization methods (i.e., equal-width, equal-frequency, and entropy-based) and proposed discretization method. From the experimental results, we confirm that the discretization methods with fuzzy partition give better results in two evaluation measures, average classification accuracy and G-mean, than those with hard partition.

Goral(Nemorhaedus caudatus) Habitat Suitability Model based on GIS and Fuzzy set at Soraksan National Park. (GIS와 퍼지집합을 이용한 산양(Nemorhaedus caudatus)의 서식지적합성모형 개발: 설악산 국립공원을 대상으로)

  • 최태영;양병이;박종화;서창완
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.472-477
    • /
    • 2003
  • 멸종위기종의 서식지를 효율적으로 관리하기 위해서는 해당 종의 서식 가능한 지역의 분포를 알아야 한다. 본 연구의 목적은 GIS와 퍼지집합을 이용하여 산양(Nemorhaedus caudatus)의 서식지적합성모형을 개발하여 멸종 위기종의 서식지를 관리하기 위한 정보를 제공하는 것이다. 산양의 서식지적합성모형 개발을 위한 본 연구의 주요내용은 다음과 같다. 첫째, 산양 서식지 이용에 관한 기존 연구를 바탕으로 산양의 잠재적 서식지 환경변수를 분류하였으며, 분석 대상지의 산양 흔적 조사를 통해 서식지 환경변수의 재분류 및 x²검정(Chi-square test)을 통한 변수들의 유용성을 파악하고, 쌍체비교를 통한 환경변수별 가중치를 계산하였다. 둘째, 기존 부울논리(boolean logic)의 단점을 보완하기 위해 현장 조사의 결과를 바탕으로 퍼지논리(fuzzy logic)에 의한 산양 서식지의 각 환경변수별 주제도를 작성하고, 주제도들의 상관관계를 분석하여 상호 관련성이 높은 변수들의 중복을 피하였다. 셋째, 환경변수별 주제도와 변수별 가중치를 바탕으로 다기준평가기법(MCE, Multi-Criteria Evaluation)을 이용하여 분석대상지의 산양 서식지적합성모형을 개발하였다. 마지막으로, 개발된 서식지적합성모형의 타당성을 검증하기 위해 분석대상지 외부 지역을 대상으로 검증을 실시하였다. 분석 결과 분석대상지의 분류정확도는 서식가능성 0.5를 기준으로 93.94%의 매우 높은 분류정확도를 나타내었으며, 검증대상지에서는 95.74%의 분류정확도를 나타내어 본 모형의 분류정확도는 일관성이 높은 것으로 판단되었다. 또한 전체 공원구역에서 서식가능성 0.5이상의 면적은 59%를 차지하였다.퇴적이 우세한 것으로 관측되었다.보체계의 구축사업의 시각이 행정정보화, 생활정보화, 산업정보화 등 다양한 분야와 결합하여 보다 큰 시너지 효과와 사용자 중심의 서비스 개선을 창출할 수 있는 기반을 제공할 것을 기대해 본다.. 이상의 결과를 종합해볼 때, ${\beta}$-glucan은 고용량일 때 직접적으로 또는 $IFN-{\gamma}$ 존재시에는 저용량에서도 복강 큰 포식세로를 활성화시킬 뿐 아니라, 탐식효율도 높임으로써 면역기능을 증진 시키는 것으로 나타났고, 그 효과는 crude ${\beta}$-glucan의 추출조건에 따라 달라지는 것을 알 수 있었다.eveloped. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. O

  • PDF

Project Risk Assessment Through Construction Sequence Analyses for Industrial Plant Construction Projects (산업플랜트 건설 프로젝트의 주요 공정 시퀀스 분석을 통한 리스크 평가)

  • Lee, Kyusung;Choi, Jaehyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.140-151
    • /
    • 2013
  • In 2011 and 2012, Korean construction firms awarded around $ 64.5. Billion each year from the overseas market in 2011. This contract value accounted for overwhelming portion of total overseas construction contract values, and this growth is expected to continue for the next decade. However, contract scopes awarded to the Korean construction firms mainly involve detailed design and construction phases due to their competitiveness for the construction techniques. In other words, front-end-engineering-design and construction project management are not considered part of core business due to the lack of project management skills and experience. The researchers focused on development of construction sequence model required to improve construction planning and scheduling skills for the Korean construction firms. The model identifies critical work items and the sequence throughout project execution process. In addition, the researchers developed a risk evaluation method by applying fuzzy theory to the critical construction activities for the industrial plant construction projects. Developed methodology will help project practitioners to develop project schedule in a timely and effe ctive manner and evaluate project risks associated with scheduling process for the industrial plant construction projects.

Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study

  • Mostafaeipour, Ali;Jooyandeh, Erfan
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.107-128
    • /
    • 2017
  • Energy is a major component of almost all economic, production, and service activities, and rapid population growth, urbanization and industrialization have led to ever growing demand for energy. Limited energy resources and increasingly evident environmental effects of fossil fuel consumption has led to a growing awareness about the importance of further use of renewable energy sources in the countries energy portfolio. Renewable hydrogen production is a convenient method for storage of unstable renewable energy sources such as wind and solar energy for use in other place or time. In this study, suitability of 25 cities located in Iran's western region for renewable hydrogen production are evaluated by multi-criteria decision making techniques including TOPSIS, VIKOR, ELECTRE, SAW, Fuzzy TOPSIS, and also hybrid ranking techniques. The choice of suitable location for the centralized renewable hydrogen production is associated with various technical, economic, social, geographic, and political criteria. This paper describes the criteria affecting the hydrogen production potential in the study region. Determined criteria are weighted with Shannon entropy method, and Angstrom model and wind power model are used to estimate respectively the solar and wind energy production potential in each city and each month. Assuming the use of proton exchange membrane electrolyzer for hydrogen production, the renewable hydrogen production potential of each city is then estimated based on the obtained wind and solar energy generation potentials. The rankings obtained with MCDMs show that Kermanshah is the best option for renewable hydrogen production, and evaluation of renewable hydrogen production capacities show that Gilangharb has the highest capacity among the studied cities.

Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 1. Development and Statistical Evaluation (안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 1. 개발 및 통계적 검증)

  • Yi-June Park;Jung-Hoon Kim
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.519-530
    • /
    • 2023
  • Deep convection can make adverse effects on safe and efficient aviation operations by causing various weather hazards such as convectively-induced turbulence, icing, lightning, and downburst. To prevent such damage, it is necessary to accurately predict spatiotemporal distribution of deep convective area near the airport and airspace. This study developed a new index, the Aviation Convective Index (ACI), for deep convection, using the operational global Unified Model of the Korea Meteorological Administration. The ACI was computed from combination of three different variables: 3-hour maximum of Convective Available Potential Energy, averaged Outgoing Longwave Radiation, and accumulative precipitation using the fuzzy logic algorithm. In this algorithm, the individual membership function was newly developed following the cumulative distribution function for each variable in Korean Peninsula. This index was validated and optimized by using the 1-yr period of radar mosaic data. According to the Receiver Operating Characteristics curve (AUC) and True Skill Score (TSS), the yearly optimized ACI (ACIYrOpt) based on the optimal weighting coefficients for 1-yr period shows a better skill than the no optimized one (ACINoOpt) with the uniform weights. In all forecast time from 6-hour to 48-hour, the AUC and TSS value of ACIYrOpt were higher than those of ACINoOpt, showing the improvement of averaged value of AUC and TSS by 1.67% and 4.20%, respectively.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

Modified analytical AI evolution of composite structures with algorithmic optimization of performance thresholds

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • This study proposes a new hybrid approach that utilizes post-earthquake survey data and numerical analysis results from an evolving finite element routing model to capture vulnerability processes. In order to achieve cost-effective evaluation and optimization, this study introduced an online data evolution data platform. The proposed method consists of four stages: 1) development of diagnostic sensitivity curve; 2) determination of probability distribution parameters of throughput threshold through optimization; 3) update of distribution parameters using smart evolution method; 4) derivation of updated diffusion parameters. Produce a blending curve. The analytical curves were initially obtained based on a finite element model used to represent a similar RC building with an estimated (previous) capacity height in the damaged area. The previous data are updated based on the estimated empirical failure probabilities from the post-earthquake survey data, and the mixed sensitivity curve is constructed using the update (subsequent) that best describes the empirical failure probabilities. The results show that the earthquake rupture estimate is close to the empirical rupture probability and corresponds very accurately to the real engineering online practical analysis. The objectives of this paper are to obtain adequate, safe and affordable housing and basic services, promote inclusive and sustainable urbanization and participation, implement sustainable and disaster-resilient buildings, sustainable human settlement planning and management. Therefore, with the continuous development of artificial intelligence and management strategy, this goal is expected to be achieved in the near future.