• Title/Summary/Keyword: fuzzy dynamics

Search Result 308, Processing Time 0.032 seconds

An Optimal Path Generation Method considering the Safe Maneuvering of UGV (무인지상차량의 안전주행을 고려한 최적경로 생성 방법)

  • Kwak, Kyung-Woon;Jeong, Hae-Kwan;Choe, Tok-Son;Park, Yong-Woon;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.951-957
    • /
    • 2010
  • An optimal path generation method considering the safety of UGV(Unmanned Ground Vehicle) is proposed and demonstrated through examples. Among various functions of UGV, real-time obstacle avoidance is a key issue to realize realistic scenario in FCS(Future Combat Systems). A two-dimensional narrow corridor environment is considered as a test field. For each step of UGV movement, two objectives are considered: One is to minimize the distance to the target and the other to maximize the distance to the nearest point of an obstacle. A weighted objective function is used in the optimization problem. Equality and inequality constraints are taken to secure the UGV's dynamics and safety. The weighting factors are controlled by a fuzzy controller which is constructed by a fuzzy rule set and membership functions. Simulations are performed for two cases. First the weighting factors are considered as constant values to understand the characteristics of the corresponding solutions and then as variables that are adjusted by the fuzzy controller. The results are satisfactory for realistic situations considered. The proposed optimal path generation with the fuzzy control is expected to be well applicable to real environment.

Stabilization Control of the Inverted Pendulum System by Hierarchical Fuzzy Inference Technique (계층적 퍼지추론기법에 의한 도립진자 시스템의 안정화 제어)

  • Lee, Joon-Tark;Chong, Hyeng-Hwan;Kim, Tae-Woo;Choi, Woo-Jin;Park, Chong-Hun;Kim, Hyeng-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1104-1106
    • /
    • 1996
  • In this paper, a hierarchical fuzzy controller is proposed for the stabilization control of the inverted pendulum system. The design of controller for that system is difficult because of its complicated nonlinear mathematical model with unknown parameters. Conventional fuzzy control strategy based only on dynamics of pendulum made have failed to stabilize. However, proposed control strategies are to swing pendulum from natural stable up equilibrium point to an unstable equilibrium point and are to transport a cart from an arbitrary position toward a center of rail. Thus, the proposed fuzzy stabilization controller have a hierarchical fuzzy inference structure; that is, the lower level is for inference interface for the virtual equilibrium point and the higher level one for the position control of cart according to the firstly inferred virtual equilibrium point.

  • PDF

Fuzzy Logic Modeling and Its Application to A Walking-Beam Reheating Furnace

  • Zhang, Bin;Wang, Jing-Cheng
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.182-187
    • /
    • 2007
  • A fuzzy modeling method is proposed to build the dynamic model of a walking-beam reheating furnace from the recorded data. In the proposed method, the number of membership function on each variable is increased individually and the modeling accuracy is evaluated iteratively. When the modeling accuracy is satisfied, the membership functions on each variable are fixed and the structure of fuzzy model is determined. Because the training data is limited, in this process, as the number of membership function increase, it is highly possible that some rules are missing, i.e., no data in the training set corresponds to the consequent part of a missing rule. To complete the rulebase, the output of the model constructed at the previous step is used to generate the consequent part of the missing rules. Finally, in the real time application, a rolling update scheme to rulebase is introduced to compensate the change of system dynamics and fine tune the rulebase. The proposed method is verified by the application to the modeling of a reheating furnace.

Optimal EEG Locations for EEG Feature Extraction with Application to User's Intension using a Robust Neuro-Fuzzy System in BCI

  • Lee, Chang Young;Aliyu, Ibrahim;Lim, Chang Gyoon
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.167-183
    • /
    • 2018
  • Electroencephalogram (EEG) recording provides a new way to support human-machine communication. It gives us an opportunity to analyze the neuro-dynamics of human cognition. Machine learning is a powerful for the EEG classification. In addition, machine learning can compensate for high variability of EEG when analyzing data in real time. However, the optimal EEG electrode location must be prioritized in order to extract the most relevant features from brain wave data. In this paper, we propose an intelligent system model for the extraction of EEG data by training the optimal electrode location of EEG in a specific problem. The proposed system is basically a fuzzy system and uses a neural network structurally. The fuzzy clustering method is used to determine the optimal number of fuzzy rules using the features extracted from the EEG data. The parameters and weight values found in the process of determining the number of rules determined here must be tuned for optimization in the learning process. Genetic algorithms are used to obtain optimized parameters. We present useful results by using optimal rule numbers and non - symmetric membership function using EEG data for four movements with the right arm through various experiments.

Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller (자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어)

  • Jeong, Hyeong-Hwan;Kim, Sang-Hyo;Ju, Seok-Min;Heo, Dong-Ryeol;Lee, Gwon-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.95-106
    • /
    • 2000
  • The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

  • PDF

A Fuzzy-Logic Controller for an Electrically Driven Steering System for a Motorcar

  • Lee, Sang-Heon;Kim, Il-Soo;Jayantha katupitiya
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1039-1052
    • /
    • 2002
  • This paper presents an application where a Fuzzy-Logic Controller (FLC) is used at a supervisory level to implement mutual coordination of the steering of the two front wheels of a motorcar. The two front wheels are steered by two independent discrete time state feedback controllers with a view to optimize the steering slip angles. The functions of the two controllers are tied together by way of a FLC. Because of the presence of unmodelled dynamics and disturbances acting on the two sides, it is difficult to achieve the desired performance using conventional control systems. This is the primary reason that FLC is emploged to solve the problem. The results show that the implemented system achieved desired coupling between the two independent systems and thereby reduces the difference between the two steered angles.

Path Tracking Motion Control using Fuzzy Inference for a Parking-Assist System (퍼지 추론을 이용한 주차지원 시스템의 경로추종 운동제어)

  • Kim, Seung-Ki;Chang, Hyo-Whan;Kim, Chang-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • A parking-assist system is defined that a driver adjusts vehicle velocity through brake pedal operation and parking-assist system controls the motion of the vehicle to follow a collision-free path. In this study, a motion control algorithm using Fuzzy inference is proposed to track a maneuvering clothoid parallel path. Simulations are performed under SIMULINK environments using MATLAB and CarSim for a vehicle model. As the vehicle model in MATLAB a bicycle model is used including lateral dynamics. The simulation results show that the path tracking performance is satisfactory under various driving and initial conditions.

Independent point Adaptive Fuzzy Sliding Mode Control of Robot Manipulator (로봇 매니퓰레이터의 독립관절 적응퍼지슬라이딩모드 제어)

  • Kim, Young-Tae;Lee, Dong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.126-132
    • /
    • 2002
  • Robot manipulator has highly nonlinear dynamics. Therefore the control of multi-link robot arms is a challenging and difficult problem. In this paper an independent joint adaptive fuzzy sliding mode scheme is developed leer control of robot manipulators. The proposed scheme does not require an accurate manipulator dynamic model, yet it guarantees asymptotic trajectory tracking despite gross robot parameter variations. Numerical simulation for independent joint control of a 3-axis PUMA arm will also be included.

Design of IMC for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System (뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계)

  • Kim, Sung-Ho;Kang, Jung-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.958-961
    • /
    • 2001
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC is their robustness with respect to a model mismatch and disturbances. But it is difficult to apply for nonlinear systems. ANFIS(Adaptive Neuro-Fuzzy Inference System) which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in ANFIS can be effectively utilized to control a nonlinear systems. In this paper, we propose new ANFIS-based IMC controller for nonlinear systems. Numerical simulation results show that the proposed control scheme has good performances.

  • PDF

LMI-Based Fuzzy Control for Wheeled Mobile Robot (바퀴형 이동로봇의 LMI기반 퍼지 제어)

  • Choi, Hyun-Eui;Kim, Tae-Kue;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1719_1720
    • /
    • 2009
  • Wheeled mobile robot has different mobility and steerability which determined by type of wheel and it's arrangement. Generally wheeled mobile robot's dynamics are nonlinear and various control methods have studied to control the mobile robot efficiently. In this paper, a T-S fuzzy modeling of a 2-wheeled mobile robot is mand a stable LMI-based state feedback fuzzy controller is designed and applied to the position control of the mobile robot for the reference trajectory following. Also, the verification of the designed controller is done by computer simulation.

  • PDF