• Title/Summary/Keyword: fuzzy differential systems

Search Result 98, Processing Time 0.031 seconds

Fuzziness for Buckling Loads of Columns with Uncertain Medums (불확실한 매체를 갖는 기둥 좌굴하중의 애매성)

  • 이병구;오상진
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.86-96
    • /
    • 1995
  • In this paper the fuzzy extension for the classical engineering mechanics problems is studied. The governing differential equation is derived for the buckling loads of the columns with uncertain mediums: the their own weight and the flexural rigidity. The columns with one typical end constraint(hinged1 clarnped/free) and the other finite rotational spring with fuzzy constant are considered in numerical examples. The vertex method is used to evaluate the fuzzy functions. The Runge-Kutta method and Determinant Search method are used to solve the differential equation and determine the buckling loads, respectively. The membership functions of the buckling load are calculated. The index of fuzziness to quantitatively describe the propagation of fuzziness is defined. According to the fuzziness of governing factors, the varlation of index of fuzziness for buckling load is investigated, and the sensitivity for the end constraints is analyzed.

  • PDF

An Improved Method to Construct T-S Fuzzy Model

  • Min, Hyung-Gi;Jeung, Eun-Tae;Kwon, Sung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2264-2269
    • /
    • 2003
  • This paper presents an improved method that constructs an equivalent T-S fuzzy model for nonlinear systems expressed by nonlinear differential equations including terms of power series. The method in this paper has fewer numbers of the rules than the previous methods as well as exactly expresses nonlinear systems. Moreover, this method can get wider feasible area satisfying the stability conditions than the previous methods. We show the improvement of modeling by comparing the proposed method with two previous methods through an inverted pendulum on a cart.

  • PDF

NNDI decentralized evolved intelligent stabilization of large-scale systems

  • Chen, Z.Y.;Wang, Ruei-Yuan;Jiang, Rong;Chen, Timothy
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • This article focuses on stability analysis and fuzzy controller synthesis for large neural network (NN) systems consisting of several interconnected subsystems represented by the NN model. Advanced and fuzzy NN differential inclusion (NNDI) for stability based on the developed algorithm with H infinity can be designed based on the evolved biological design. This representation is constructed using sector linearity for NN models. Sector linearity transforms a non-linear model into a linear model based on proposed operations. New sufficient conditions are realized in the form of LMI (linear matrix inequalities) to ensure the asymptotic stability of the trans-Lyapunov function. This transforms the nonlinear model into a linear model based on multiple rules. At last, a numerical case study with simulations is derived as illustration to prove its feasibility in real nonlinear structures.

A Computer Oriented Solution for the Fractional Boundary Value Problem with Fuzzy Parameters with Application to Singular Perturbed Problems

  • Asklany, Somia A.;Youssef, I.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.223-227
    • /
    • 2021
  • A treatment based on the algebraic operations on fuzzy numbers is used to replace the fuzzy problem into an equivalent crisp one. The finite difference technique is used to replace the continuous boundary value problem (BVP) of arbitrary order 1<α≤2, with fuzzy boundary parameters into an equivalent crisp (algebraic or differential) system. Three numerical examples with different behaviors are considered to illustrate the treatment of the singular perturbed case with different fractional orders of the BVP (α=1.8, α=1.9) as well as the classical second order (α=2). The calculated fuzzy solutions are compared with the crisp solutions of the singular perturbed BVP using triangular membership function (r-cut representation in parametric form) for different values of the singular perturbed parameter (ε=0.8, ε=0.9, ε=1.0). Results are illustrated graphically for the different values of the included parameters.

A Fuzzy-Logic Controller for an Electrically Driven Steering System for a Motorcar

  • Lee, Sang-Heon;Kim, Il-Soo;Jayantha katupitiya
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1039-1052
    • /
    • 2002
  • This paper presents an application where a Fuzzy-Logic Controller (FLC) is used at a supervisory level to implement mutual coordination of the steering of the two front wheels of a motorcar. The two front wheels are steered by two independent discrete time state feedback controllers with a view to optimize the steering slip angles. The functions of the two controllers are tied together by way of a FLC. Because of the presence of unmodelled dynamics and disturbances acting on the two sides, it is difficult to achieve the desired performance using conventional control systems. This is the primary reason that FLC is emploged to solve the problem. The results show that the implemented system achieved desired coupling between the two independent systems and thereby reduces the difference between the two steered angles.

CELL STATE SPACE ALGORITHM AND NEURAL NETWORK BASED FUZZY LOGIC CONTROLLER DESIGN

  • Aao;Ding, Gen-Ya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.972-974
    • /
    • 1993
  • This paper presents a new method to automatically design fuzzy logic controller(FLC). The main problems of designing FLC are how to optimally and automatically select the control rules and the parameters of membership function (MF). Cell state space algorithms (CSS), differential competitive learning (DCL) and multialyer neural network are combined in this paper to solve the problems. When the dynamical model of a control process is known. CSS can be used to generate a group of optimal input output pairs(X, Y) used by a controller. The(X, Y) then can be used to determine the FLC rules by DCL and to determine the optimal parameters of MF by DCL and to determine the optimal parameters of MF by multilayer neural network trained by BP algorithm.

  • PDF

Tuning the Parameters for the Decision Making System in Order to Define Athlete's Aerobic and Anaerobic Thresholds

  • Ketola, Jaakko;Saastamoinen, Kalle;Turunen, Esko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.317-320
    • /
    • 2004
  • In this work we have managed to find parameters for defining athlete's aerobic and anaerobic thresholds. Thresholds which are of vital importance for top athletes. It is shown how differential evolution and different similarity measures has been used to tune computational model for threshold definitions. From our results it is obvious that the use of right parameter values for this kind expert system is of vital importance.

  • PDF

Neural optimization networks with fuzzy weighting for collision free motions of redundant robot manipulators

  • Hyun, Woong-Keun;Suh, Il-Hong;Kim, Kyong-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.564-568
    • /
    • 1992
  • A neural optimization network is designed to solve the collsion-free inverse kinematics problem for redundant robot manipulators under the constraints of joint limits, maximum velocities and maximum accelerations. And the fuzzy rules are proposed to determine the weightings of neural optimization networks to avoid the collision between robot manipulator and obstacles. The inputs of fuzzy rules are the resultant distance, change of the distance and sum of the changes. And the output of fuzzy rules is defined as the capability of collision avoidance of joint differential motion. The weightings of neural optimization networks are adjusted according to the capability of collision avoidance of each joint. To show the validities of the proposed method computer simulation results are illustrated for the redundant robot with three degrees of freedom,

  • PDF

Design of hybrid-type fuzzy controller for stabilizing molten steel level in high speed continuous casting (연주 탕면레벨 안정화를 위한 하이브리드형 퍼지제어기 설계)

  • 이덕만;권영섭;이상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.67-67
    • /
    • 2000
  • In this paper, a hybrid type fuzzy controller is proposed to maintain molten steel level stable and reliable manner in high speed continuous casting regardless of various disturbances such as casting speed change, tundish weight variation, 치ogging/undoning of SEN(Submerged Entry Nozzle), periodic bulgings, etc. To accomplish this purpose, hardware filter and software filer are carefully designed to eliminate high frequency noise and to smooth input signals from harsh environments. In order to minimize the molten steel level variations from various disturbances the controller uses hybrid type control term: fuzzy logic term, proportional term, differential term and nonlinear feedback compensation tenn. The proposed controller is applied tn commercial mini-mill plant and shows considerable improvement in minimizing the molten steel variation.

  • PDF

3D Radar Objects Tracking and Reflectivity Profiling

  • Kim, Yong Hyun;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2012
  • The ability to characterize feature objects from radar readings is often limited by simply looking at their still frame reflectivity, differential reflectivity and differential phase data. In many cases, time-series study of these objects' reflectivity profile is required to properly characterize features objects of interest. This paper introduces a novel technique to automatically track multiple 3D radar structures in C,S-band in real-time using Doppler radar and profile their characteristic reflectivity distribution in time series. The extraction of reflectivity profile from different radar cluster structures is done in three stages: 1. static frame (zone-linkage) clustering, 2. dynamic frame (evolution-linkage) clustering and 3. characterization of clusters through time series profile of reflectivity distribution. The two clustering schemes proposed here are applied on composite multi-layers CAPPI (Constant Altitude Plan Position Indicator) radar data which covers altitude range of 0.25 to 10 km and an area spanning over hundreds of thousands $km^2$. Discrete numerical simulations show the validity of the proposed technique and that fast and accurate profiling of time series reflectivity distribution for deformable 3D radar structures is achievable.