• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.027 seconds

Fuzzy Learning Method Using Genetic Algorithms

  • Choi, Sangho;Cho, Kyung-Dal;Park, Sa-Joon;Lee, Malrey;Kim, Kitae
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.6
    • /
    • pp.841-850
    • /
    • 2004
  • This paper proposes a GA and GDM-based method for removing unnecessary rules and generating relevant rules from the fuzzy rules corresponding to several fuzzy partitions. The aim of proposed method is to find a minimum set of fuzzy rules that can correctly classify all the training patterns. When the fine fuzzy partition is used with conventional methods, the number of fuzzy rules has been enormous and the performance of fuzzy inference system became low. This paper presents the application of GA as a means of finding optimal solutions over fuzzy partitions. In each rule, the antecedent part is made up the membership functions of a fuzzy set, and the consequent part is made up of a real number. The membership functions and the number of fuzzy inference rules are tuned by means of the GA, while the real numbers in the consequent parts of the rules are tuned by means of the gradient descent method. It is shown that the proposed method has improved than the performance of conventional method in formulating and solving a combinatorial optimization problem that has two objectives: to maximize the number of correctly classified patterns and to minimize the number of fuzzy rules.

  • PDF

A Study on the Application of Fuzzy membership function in GIS Spatial Analysis - In the case of Evaluation of Waste Landfill - (GIS 공간분석에 있어 Fuzzy 함수의 적용에 관한 연구 -쓰레기 매립장 적지분석을 중심으로-)

  • Lim, Seung-Hyeon;Hwang, Ju-Tae;Park, Young-Ki;Lee, Jang-Choon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.43-49
    • /
    • 2007
  • In this study, a GIS spatial analysis method adopted fuzzy concept was introduced and land suitability analysis of waste landfill were conducted through this method. Previous studies conducted site evaluation and land suitability analysis by appling spatial overlay of conventional GIS that based on the boolean logic of crisp set. However these method can not consider the uncertainty of spatial data and the incongruity of data classification criteria, because these method handle spatial data based on the boolean logic of crisp set. As not provided trustable analysis result, conventional GIS spatial overlay method lacks opportunity for expanding use in reality. This study selected waste landfill as facility for analysis and applied fuzzy spatial analysis method as an objective approach. In the concrete contents of study, a series process with regard to the definition procedure of membership function for continuous data and the fuzzy input value generation of spatial data for fuzzy analysis is established. As a result, in this study we proposed a method that derive parameters for deciding the membership function of spatial data by considering the criterion of data classification and factor selection for land suitability analysis of waste landfill.

  • PDF

Generation of Efficient Fuzzy Classification Rules for Intrusion Detection (침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성)

  • Kim, Sung-Eun;Khil, A-Ra;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.519-529
    • /
    • 2007
  • In this paper, we investigate the use of fuzzy rules for efficient intrusion detection. We use evolutionary algorithm to optimize the set of fuzzy rules for intrusion detection by constructing fuzzy decision trees. For efficient execution of evolutionary algorithm we use supervised clustering to generate an initial set of membership functions for fuzzy rules. In our method both performance and complexity of fuzzy rules (or fuzzy decision trees) are taken into account in fitness evaluation. We also use evaluation with data partition, membership degree caching and zero-pruning to reduce time for construction and evaluation of fuzzy decision trees. For performance evaluation, we experimented with our method over the intrusion detection data of KDD'99 Cup, and confirmed that our method outperformed the existing methods. Compared with the KDD'99 Cup winner, the accuracy was increased by 1.54% while the cost was reduced by 20.8%.

Fuzzy Kernel K-Nearest Neighbor Algorithm for Image Segmentation (영상 분할을 위한 퍼지 커널 K-nearest neighbor 알고리즘)

  • Choi Byung-In;Rhee Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.828-833
    • /
    • 2005
  • Kernel methods have shown to improve the performance of conventional linear classification algorithms for complex distributed data sets, as mapping the data in input space into a higher dimensional feature space(7). In this paper, we propose a fuzzy kernel K-nearest neighbor(fuzzy kernel K-NN) algorithm, which applies the distance measure in feature space based on kernel functions to the fuzzy K-nearest neighbor(fuzzy K-NN) algorithm. In doing so, the proposed algorithm can enhance the Performance of the conventional algorithm, by choosing an appropriate kernel function. Results on several data sets and segmentation results for real images are given to show the validity of our proposed algorithm.

Evaluation of User Profile Construction Method by Fuzzy Inference

  • Kim, Byeong-Man;Rho, Sun-Ok;Oh, Sang-Yeop;Lee, Hyun-Ah;Kim, Jong-Wan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.175-184
    • /
    • 2008
  • To construct user profiles automatically, an extraction method for representative keywords from a set of documents is needed. In our previous works, we suggested such a method and showed its usefulness. Here, we apply it to the classification problem and observe how much it contributes to performance improvement. The method can be used as a linear document classifier with few modifications. So, we first evaluate its performance for that case. The method is also applicable to some non-linear classification methods such as GIS (Generalized Instance Set). In GIS algorithm, generalized instances are built from training documents by a generalization function and then the K-NN algorithm is applied to them, where the method can be used as a generalization function. For comparative works, two famous linear classification methods, Rocchio and Widrow-Hoff algorithms, are also used. Experimental results show that our method is better than the others for the case that only positive documents are considered, but not when negative documents are considered together.

Polynomial Fuzzy Radial Basis Function Neural Network Classifiers Realized with the Aid of Boundary Area Decision

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2098-2106
    • /
    • 2014
  • In the area of clustering, there are numerous approaches to construct clusters in the input space. For regression problem, when forming clusters being a part of the overall model, the relationships between the input space and the output space are essential and have to be taken into consideration. Conditional Fuzzy C-Means (c-FCM) clustering offers an opportunity to analyze the structure in the input space with the mechanism of supervision implied by the distribution of data present in the output space. However, like other clustering methods, c-FCM focuses on the distribution of the data. In this paper, we introduce a new method, which by making use of the ambiguity index focuses on the boundaries of the clusters whose determination is essential to the quality of the ensuing classification procedures. The introduced design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the fuzzy classifiers and quantify several essentials design aspects.

Support Vector Machine Based on Type-2 Fuzzy Training Samples

  • Ha, Ming-Hu;Huang, Jia-Ying;Yang, Yang;Wang, Chao
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.26-29
    • /
    • 2012
  • In order to deal with the classification problems of type-2 fuzzy training samples on generalized credibility space. Firstly the type-2 fuzzy training samples are reduced to ordinary fuzzy samples by the mean reduction method. Secondly the definition of strong fuzzy linear separable data for type-2 fuzzy samples on generalized credibility space is introduced. Further, by utilizing fuzzy chance-constrained programming and classic support vector machine, a support vector machine based on type-2 fuzzy training samples and established on generalized credibility space is given. An example shows the efficiency of the support vector machine.

Performance Improvement of Backpropagation Algorithm by Automatic Tuning of Learning Rate using Fuzzy Logic System

  • Jung, Kyung-Kwon;Lim, Joong-Kyu;Chung, Sung-Boo;Eom, Ki-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.157-162
    • /
    • 2003
  • We propose a learning method for improving the performance of the backpropagation algorithm. The proposed method is using a fuzzy logic system for automatic tuning of the learning rate of each weight. Instead of choosing a fixed learning rate, the fuzzy logic system is used to dynamically adjust the learning rate. The inputs of fuzzy logic system are delta and delta bar, and the output of fuzzy logic system is the learning rate. In order to verify the effectiveness of the proposed method, we performed simulations on the XOR problem, character classification, and function approximation. The results show that the proposed method considerably improves the performance compared to the general backpropagation, the backpropagation with momentum, and the Jacobs'delta-bar-delta algorithm.

Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with Conditional Fuzzy C-Means Clustering

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1872-1879
    • /
    • 2016
  • The techniques to recycle and reuse plastics attract public attention. These public attraction and needs result in improving the recycling technique. However, the identification technique for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, which is a kind of supervised learning based clustering algorithms, is used to determine the location of radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over input space under the supervision of auxiliary information. The auxiliary information is defined by using k Nearest Neighbor approach.

New Soil Classification System Using Cone Penetration Test (콘관입시험결과를 이용한 새로운 흙분류 방법의 개발)

  • Kim, Chan-Hong;Im, Jong-Chul;Kim, Young-Sang;Joo, No-Ah
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.57-70
    • /
    • 2008
  • The advantage of piezocone penetration test is a guarantee of continuous data, which is a source of reliable interpretation of target soil layer. Many researches have been carried out f3r several decades and several classification charts have been developed to classify in-situ soil from the cone penetration test result. Since most present classification charts or methods were developed based on the data which were compiled over the world except Korea, they should be verified to be feasible for Korean soil. Furthermore, sometimes their charts provide different soil classification results according to the different input parameters. However, unfortunately, revision of those charts is quite difficult or almost impossible. In this research a new soil classification model is proposed by using fuzzy C-mean clustering and neuro-fuzzy theory based on the 5371 CPT results and soil logging results compiled from 17 local sites around Korea. Proposed neuro-fuzzy soil classification model was verified by comparing the classification results f3r new data, which were not used during learning process of neuro-fuzzy model, with real soil log. Efficiency of proposed neuro-fuzzy model was compared with other soft computing classification models and Robertson method for new data.