• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.027 seconds

Premature Ventricular Contraction Classification through R Peak Pattern and RR Interval based on Optimal R Wave Detection (최적 R파 검출 기반의 R피크 패턴과 RR간격을 통한 조기심실수축 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require higher computational cost and larger processing time. Therefore it is necessary to design efficient algorithm that classifies PVC(premature ventricular contraction) and decreases computational cost by accurately detecting feature point based on only R peak through optimal R wave. For this purpose, we detected R wave through optimal threshold value and extracted RR interval and R peak pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through RR interval and R peak pattern. The performance of R wave detection and PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30. The achieved scores indicate the average of 99.02% in R wave detection and the rate of 94.85% in PVC classification.

Photon-counting linear discriminant analysis for face recognition at a distance

  • Yeom, Seok-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • Face recognition has wide applications in security and surveillance systems as well as in robot vision and machine interfaces. Conventional challenges in face recognition include pose, illumination, and expression, and face recognition at a distance involves additional challenges because long-distance images are often degraded due to poor focusing and motion blurring. This study investigates the effectiveness of applying photon-counting linear discriminant analysis (Pc-LDA) to face recognition in harsh environments. A related technique, Fisher linear discriminant analysis, has been found to be optimal, but it often suffers from the singularity problem because the number of available training images is generally much smaller than the number of pixels. Pc-LDA, on the other hand, realizes the Fisher criterion in high-dimensional space without any dimensionality reduction. Therefore, it provides more invariant solutions to image recognition under distortion and degradation. Two decision rules are employed: one is based on Euclidean distance; the other, on normalized correlation. In the experiments, the asymptotic equivalence of the photon-counting method to the Fisher method is verified with simulated data. Degraded facial images are employed to demonstrate the robustness of the photon-counting classifier in harsh environments. Four types of blurring point spread functions are applied to the test images in order to simulate long-distance acquisition. The results are compared with those of conventional Eigen face and Fisher face methods. The results indicate that Pc-LDA is better than conventional facial recognition techniques.

Pattern Classification of the Strength of Concrete by Feature Parameters and Evidence Accumulation of Ultrasonic Signal (초음파신호의 특징 파라메터 및 증거축적 방법을 이용한 콘크리트 강도 분류)

  • Kim, Se-Dong;Sin, Dong-Hwan;Lee, Yeong-Seok;Kim, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1335-1343
    • /
    • 1999
  • This paper presents concrete pattern recognition method to identify the strength of concrete by evidence accumulation with multiple parameters based on artificial intelligence techniques. At first, zero-crossing(ZCR), mean frequency(MEANF), median frequency(MEDF) and autoregressive model coefficient(ARC) are extracted as feature parameters from ultrasonic signal of concrete. Pattern recognition is carried out through the evidence accumulation procedure using distance measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for concrete pattern recognition.

  • PDF

Isolated Word Recognition Using a Speaker-Adaptive Neural Network (화자적응 신경망을 이용한 고립단어 인식)

  • 이기희;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.765-776
    • /
    • 1995
  • This paper describes a speaker adaptation method to improve the recognition performance of MLP(multiLayer Perceptron) based HMM(Hidden Markov Model) speech recognizer. In this method, we use lst-order linear transformation network to fit data of a new speaker to the MLP. Transformation parameters are adjusted by back-propagating classification error to the transformation network while leaving the MLP classifier fixed. The recognition system is based on semicontinuous HMM's which use the MLP as a fuzzy vector quantizer. The experimental results show that rapid speaker adaptation resulting in high recognition performance can be accomplished by this method. Namely, for supervised adaptation, the error rate is signifecantly reduced from 9.2% for the baseline system to 5.6% after speaker adaptation. And for unsupervised adaptation, the error rate is reduced to 5.1%, without any information from new speakers.

  • PDF

Human Iris Recognition using Wavelet Transform and Neural Network

  • Cho, Seong-Won;Kim, Jae-Min;Won, Jung-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.178-186
    • /
    • 2003
  • Recently, many researchers have been interested in biometric systems such as fingerprint, handwriting, key-stroke patterns and human iris. From the viewpoint of reliability and robustness, iris recognition is the most attractive biometric system. Moreover, the iris recognition system is a comfortable biometric system, since the video image of an eye can be taken at a distance. In this paper, we discuss human iris recognition, which is based on accurate iris localization, robust feature extraction, and Neural Network classification. The iris region is accurately localized in the eye image using a multiresolution active snake model. For the feature representation, the localized iris image is decomposed using wavelet transform based on dyadic Haar wavelet. Experimental results show the usefulness of wavelet transform in comparison to conventional Gabor transform. In addition, we present a new method for setting initial weight vectors in competitive learning. The proposed initialization method yields better accuracy than the conventional method.

Classification of OECD Countries Based on National AI Competitiveness: Employing Fuzzy-set Ideal Type Analysis (국가 AI 경쟁력에 따른 OECD 국가 유형 분류: 퍼지셋 이상형 분석을 중심으로)

  • Shin, Seung-Yoon
    • Informatization Policy
    • /
    • v.31 no.2
    • /
    • pp.39-64
    • /
    • 2024
  • This study assesses the national AI competitiveness of 38 OECD countries with focus on AI human capital, AI infrastructure, and AI innovation capacity. Utilizing the fuzzy-set ideal type analysis method, these countries were categorized into eight distinct types based on their national AI competitiveness levels, leading to the derivation of pertinent implications. The analysis identified a category termed "AI Leading Country" consisting of North American, Western European, and Nordic countries, along with several Asian nations including South Korea. Remarkably, the United States demonstrated dominant global national AI competitiveness, achieving the highest fuzzy scores across all three evaluative factors. South Korea was classified as an "AI Leading Country" primarily due to its superior AI infrastructure, but its performance in AI human capital and AI innovation capacity was found to be moderate relative to other analyzed nations; thus highlighting the necessity of sustained focus on the accumulation of AI human capital and bolstering of AI innovation capacity.

Adaptive VM Allocation and Migration Approach using Fuzzy Classification and Dynamic Threshold (퍼지 분류 및 동적 임계 값을 사용한 적응형 VM 할당 및 마이그레이션 방식)

  • Mateo, John Cristopher A.;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.51-59
    • /
    • 2017
  • With the growth of Cloud computing, it is important to consider resource management techniques to minimize the overall costs of management. In cloud environments, each host's utilization and virtual machine's request based on user preferences are dynamic in nature. To solve this problem, efficient allocation method of virtual machines to hosts where the classification of virtual machines and hosts is undetermined should be studied. In reducing the number of active hosts to reduce energy consumption, thresholds can be implemented to migrate VMs to other hosts. By using Fuzzy logic in classifying resource requests of virtual machines and resource utilization of hosts, we proposed an adaptive VM allocation and migration approach. The allocation strategy classifies the VMs according to their resource request, then assigns it to the host with the lowest resource utilization. In migrating VMs from overutilized hosts, the resource utilization of each host was used to create an upper threshold. In selecting candidate VMs for migration, virtual machines that contributed to the high resource utilization in the host were chosen to be migrated. We evaluated our work through simulations and results show that our approach was significantly better compared to other VM allocation and Migration strategies.

A design of fuzzy pattern matching classifier using genetic algorithms and its applications (유전 알고리즘을 이용한 퍼지 패턴 매칭 분류기의 설계와 응용)

  • Jung, Soon-Won;Park, Gwi-Tae
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.87-95
    • /
    • 1996
  • A new design scheme for the fuzzy pattern matching classifier (FPMC) is proposed. in conventional design of FPMC, there are no exact information about the membership function of which shape and number critically affect the performance of classifier. So far, a trial and error or heuristic method is used to find membership functions for the input patterns. But each of them have limits in its application to the various types of pattern recognition problem. In this paper, a new method to find the appropriate shape and number of membership functions for the input patterns which minimize classification error is proposed using genetic algorithms(GAs). Genetic algorithms belong to a class of stochastic algorithms based on biological models of evolution. They have been applied to many function optimization problems and shown to find optimal or near optimal solutions. In this paper, GAs are used to find the appropriate shape and number of membership functions based on fitness function which is inversely proportional to classification error. The strings in GAs determine the membership functions and recognition results using these membership functions affect reproduction of next generation in GAs. The proposed design scheme is applied to the several patterns such as tire tread patterns and handwritten alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF

Fuzzy discretization with spatial distribution of data and Its application to feature selection (데이터의 공간적 분포를 고려한 퍼지 이산화와 특징선택에의 응용)

  • Son, Chang-Sik;Shin, A-Mi;Lee, In-Hee;Park, Hee-Joon;Park, Hyoung-Seob;Kim, Yoon-Nyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2010
  • In clinical data minig, choosing the optimal subset of features is such important, not only to reduce the computational complexity but also to improve the usefulness of the model constructed from the given data. Moreover the threshold values (i.e., cut-off points) of selected features are used in a clinical decision criteria of experts for differential diagnosis of diseases. In this paper, we propose a fuzzy discretization approach, which is evaluated by measuring the degree of separation of redundant attribute values in overlapping region, based on spatial distribution of data with continuous attributes. The weighted average of the redundant attribute values is then used to determine the threshold value for each feature and rough set theory is utilized to select a subset of relevant features from the overall features. To verify the validity of the proposed method, we compared experimental results, which applied to classification problem using 668 patients with a chief complaint of dyspnea, based on three discretization methods (i.e., equal-width, equal-frequency, and entropy-based) and proposed discretization method. From the experimental results, we confirm that the discretization methods with fuzzy partition give better results in two evaluation measures, average classification accuracy and G-mean, than those with hard partition.

Seismic Performance Level Criteria and Evaluation Methods (기존시설물 내진성능평가를 위한 평가항목 분류체계와 평가방법)

  • 김남희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.251-260
    • /
    • 2000
  • Seismic performance evaluation systems require rational classification of structure systems, proper evaluation criteria, and their scoring index for synthesis. Current seismic performance systems need expert judgments based on collection of available data, approximate analysis of important items, and various scoring system. This study presents a three-step seismic performance evaluation system for building structures in Korea. Each evaluation step determines the seismic performance and the method depends on the degree of refinement of analysis. The preliminary step evaluation involves the global attributes of structures such as vertical irregularity, asymmetric plan, redundancy, and age of structures. The second step requires an elastic analysis for estimation of forces acting on critical sections and checks the strength and ductility. The final step requires inelastic capacity of structures. Each stephas own evaluation scheme with proper weighing factor dependent on the importance and consequence. This study applies the fuzzy theory to a scoring method that synthesizes the individual quantity to a representative value.

  • PDF