• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.027 seconds

Detection and Diagnosis of Induction Motor Using Conditional FCM and Radial Basis Function Network (조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출)

  • Kim, Sung-Suk;Lee, Dae-Jeong;Park, Jang-Hwan;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.878-882
    • /
    • 2004
  • In this paper, we propose a hierarchical hybrid neural network for detecting faults of induction motor. Implementing the classifier based on the input and output data, we apply appropriate transform and classification method at each step. In the proposed method, after obtaining the current of state of motor for each period, we transform it by Principle Component Analysis(PCA) to reduce its dimension. Before the training process, we use the conditional Fuzzy C-means(FCM) for obtaining the initial parameters of neural network for more effective learning procedure. From the various simulations, we find that the proposed method shows better performance to detect and diagnosis of induction motor and compare than other methods.

Design of Optimized Radial Basis Function Neural Networks Classifier Using EMC Sensor for Partial Discharge Pattern Recognition (부분방전 패턴인식을 위해 EMC센서를 이용한 최적화된 RBFNNs 분류기 설계)

  • Jeong, Byeong-Jin;Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1392-1401
    • /
    • 2017
  • In this study, the design methodology of pattern classification is introduced for avoiding faults through partial discharge occurring in the power facilities and local sites. In order to classify some partial discharge types according to the characteristics of each feature, the model is constructed by using the Radial Basis Function Neural Networks(RBFNNs) and Particle Swarm Optimization(PSO). In the input layer of the RBFNNs, the feature vector is searched and the dimension is reduced through Principal Component Analysis(PCA) and PSO. In the hidden layer, the fuzzy coefficients of the fuzzy clustering method(FCM) are tuned using PSO. Raw datasets for partial discharge are obtained through the Motor Insulation Monitoring System(MIMS) instrument using an Epoxy Mica Coupling(EMC) sensor. The preprocessed datasets for partial discharge are acquired through the Phase Resolved Partial Discharge Analysis(PRPDA) preprocessing algorithm to obtain partial discharge types such as void, corona, surface, and slot discharges. Also, when the amplitude size is considered as two types of both the maximum value and the average value in the process for extracting the preprocessed datasets, two different kinds of feature datasets are produced. In this study, the classification ratio between the proposed RBFNNs model and other classifiers is shown by using the two different kinds of feature datasets, and also we demonstrate the proposed model shows superiority from the viewpoint of classification performance.

A Comparative Study of Uncertainty Handling Methods in Knowledge-Based System (지식기반시스템에서 불확실성처리방법의 비교연구)

  • 송수섭
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-71
    • /
    • 1997
  • There has been considerable research recently on uncertainty handling in the fields of artificial intelligence and knowledge-based system. Various numerical and non-numerical methods have been proposed for representing and propagating uncertainty in knowledge-based system. The Bayesian method, the Dempster-Shafer's Evidence Theory, the Certainty Factor model and the Fuzzy Set Theory are most frequently appeared in the knowledge-based system. Each of these four methods views uncertainty from a different perspective and propagates it differently. There is no single method which can handle uncertainty properly in all kinds of knowledge-based systems' domain. Therefore a knowledge-based system will work more effectively when the uncertainty handling method in the system fits to the system's environment. This paper proposed a framework for selecting proper uncertainty handling methods in knowledge-based system with respect to characteristics of problem domain and cognitive styles of experts. A schema with strategic/operational and unstructured/structured classification is employed to differenciate domain. And a schema with systematic/intuitive and preceptive/receptive classification is employed to differenciate experts' cognitive style. The characteristics of uncertainty handling methods are compared with characteristics of problem domains and cognitive styles respectively. Then a proper uncertainty handling method is proposed for each category.

  • PDF

Fuzzy Cluster Based Diagnosis System for Digital Mammogram (퍼지 클러스터 기반 디지털 유방 X선 영상 진단 시스템)

  • Rhee, Hyun-Sook;Yoon, Seok-Min
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.165-172
    • /
    • 2009
  • According to the American Cancer Society, breast cancer is the second largest cause of cancer deaths and most frequently diagnosed cancer in women. The currently most popular method for early detection of breast cancer is the digital mammography. A mass or calcification lesion has been known as the most important clue for the diagnosis. In this paper, we propose a diagnosis approach based on fuzzy cluster knowledge base. We combine different two sources of feature data in duel OFUN-NET and produce the diagnosis result with possibility degree. We also present the experimental results on the dataset of mass and calcification lesions extracted from the public real world mammogram database DDSM. These results show higher classification accuracy than conventional methods and the feasibility as a decision supporting tool for diagnosis of digital mammogram.

Nucleus Segmentation and Recognition of Uterine Cervical Pap-Smears using Enhanced Fuzzy ART Algorithm (개선된 퍼지 ART 알고리즘을 이용한 자궁 경부 세포진 핵 분할 및 인식)

  • Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.519-524
    • /
    • 2006
  • Segmentation for the region of nucleus in the image of uterine cervical cytodiagnosis is known as the most difficult and important part in the automatic cervical cancer recognition system. In this paper, the region of nucleus is extracted from an image of uterine cervical cytodiagnosis using the fuzzy grey morphology operation. The characteristics of the nucleus are extracted from the analysis of morphemetric features, densitometric features, colormetric features, and textural features based on the detected region of nucleus area. The classification criterion of a nucleus is defined according to the standard categories of the Bethesda system. The enhanced fuzzy ART algorithm is used to the extracted nucleus and the results show that the proposed method is efficient in nucleus recognition and uterine cervical Pap-Smears extraction.

Proposal of Weight Adjustment Methods Using Statistical Information in Fuzzy Weighted Mean Classifiers (퍼지 가중치 평균 분류기에서 통계 정보를 활용한 가중치 설정 기법의 제안)

  • Woo, Young-Woon;Heo, Gyeong-Yong;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.9-15
    • /
    • 2009
  • The fuzzy weighted mean classifier is one of the most common classification models and could achieve high performance by adjusting the weights. However, the weights were generally decided based on the experience of experts, which made the resulting classifiers to suffer the lack of consistency and objectivity. To resolve this problem, in this paper, a weight deciding method based on the statistics of the data is introduced, which ensures the learned classifiers to be consistent and objective. To investigate the effectiveness of the proposed methods, Iris data set available from UCI machine learning repository is used and promising results are obtained.

A Study on Prediction of Wake Distribution by Neuro-Fuzzy System (뉴로퍼지시스템에 의한 반류분포 추정에 관한 연구)

  • Shin, Sung-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.154-159
    • /
    • 2007
  • Wake distribution data of stem flow fields have been accumulated systematically by model tests. If the correlation between geometrical hull information and wake distribution is grasped through the accumulated data, this correlation can be helpful to designing similar ships. In this paper, Neuro-Fuzzy system that is emerging as a new knowledge over a wide range of fields nowadays is tried to estimate the wake distribution on the propeller plan. Neuro-Fuzzy system is well known as one of prospective and representative analysis method for prediction, classification, diagnosis of real complicated world problem, and it is widely applied even in the engineering fields. For this study three-dimensional stern hull forms and nominal wake values from a model test ate structured as processing elements of input and output layer, respectively. The proposed method is proved as an useful technique in ship design by comparing measured wake distribution with predicted wake distribution.

An Image Contrast Enhancement Technique Using the Improved Integrated Adaptive Fuzzy Clustering Model (개선된 IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.777-781
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved IAFC model is used to classify the image into two classes. The proposed method is applied to several experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

Fuzzy Logic-based Context-Aware Access Control Model for the Cloud Computing Environment (클라우드 컴퓨팅 환경을 위한 퍼지 논리 기반 상황인식 접근 제어 모델)

  • Jing, Si Da;Chung, Mok-Dong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.51-60
    • /
    • 2011
  • Authentication model in the wireless environment has many security vulnerabilities. However, there is no adapting standard method in this field. Therefore, we propose a fuzzy logic based authentication model to enhance the security level in the authentication environment. We use fuzzy logic based classification to construct our model, and also additionally utilize improved AHP and case-based reasoning for an appropriate decision making. We compute the context information by using the improved AHP method, use the proposed model to compute the security level for the input data, and securely apply the proposed model to the wireless environment which has diverse context information. We look forward to better security model including cloud computing by extending the proposed method in the future.

Design of the Optimal Fuzzy Prediction Systems using RCGKA (RCGKA를 이용한 최적 퍼지 예측 시스템 설계)

  • Bang, Young-Keun;Shim, Jae-Son;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.9-15
    • /
    • 2009
  • In the case of traditional binary encoding technique, it takes long time to converge the optimal solutions and brings about complexity of the systems due to encoding and decoding procedures. However, the ROGAs (real-coded genetic algorithms) do not require these procedures, and the k-means clustering algorithm can avoid global searching space. Thus, this paper proposes a new approach by using their advantages. The proposed method constructs the multiple predictors using the optimal differences that can reveal the patterns better and properties concealed in non-stationary time series where the k-means clustering algorithm is used for data classification to each predictor, then selects the best predictor. After selecting the best predictor, the cluster centers of the predictor are tuned finely via RCGKA in secondary tuning procedure. Therefore, performance of the predictor can be more enhanced. Finally, we verifies the prediction performance of the proposed system via simulating typical time series examples.

  • PDF