• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.019 seconds

Prediction and Classification System for Temporal lobe Epilepsy (측두엽 간질 예측과 분류시스템)

  • Kim, Min-Soo;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.199-206
    • /
    • 2004
  • Epileptic seizures result from a temporary electrical disturbance of the brain. In this paper, a method of discriminating EEG for diagnoses of temporal lobe epilepsy is proposed. The proposed method for classification of epilepsy and sleep EEG is based on the wavelet transform and the fuzzy c-means. The magnitude and mean of wavelet coefficients for each EEG band are applied to the cluster of the FCM classifier. The proposed system show a little more accurate diagnosis for EEG by analysis of frequency for Wavelet and the success rate of 95% classification using FCM. From the simulation results by the implemented system, we demonstrated this research can be reduce doctor's labors and realize quantitative diagnosis of EEG.

Design of Echo Classifier Based on Neuro-Fuzzy Algorithm Using Meteorological Radar Data (기상레이더를 이용한 뉴로-퍼지 알고리즘 기반 에코 분류기 설계)

  • Oh, Sung-Kwun;Ko, Jun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.676-682
    • /
    • 2014
  • In this paper, precipitation echo(PRE) and non-precipitaion echo(N-PRE)(including ground echo and clear echo) through weather radar data are identified with the aid of neuro-fuzzy algorithm. The accuracy of the radar information is lowered because meteorological radar data is mixed with the PRE and N-PRE. So this problem is resolved by using RBFNN and judgement module. Structure expression of weather radar data are analyzed in order to classify PRE and N-PRE. Input variables such as Standard deviation of reflectivity(SDZ), Vertical gradient of reflectivity(VGZ), Spin change(SPN), Frequency(FR), cumulation reflectivity during 1 hour(1hDZ), and cumulation reflectivity during 2 hour(2hDZ) are made by using weather radar data and then each characteristic of input variable is analyzed. Input data is built up from the selected input variables among these input variables, which have a critical effect on the classification between PRE and N-PRE. Echo judgment module is developed to do echo classification between PRE and N-PRE by using testing dataset. Polynomial-based radial basis function neural networks(RBFNNs) are used as neuro-fuzzy algorithm, and the proposed neuro-fuzzy echo pattern classifier is designed by combining RBFNN with echo judgement module. Finally, the results of the proposed classifier are compared with both CZ and DZ, as well as QC data, and analyzed from the view point of output performance.

A Fuzzy-based Network Intrusion Detection System Through sessionization (세션화 방식을 통한 퍼지기반 네트워크 침입탐지시스템)

  • Park, Ju-Gi;Choi, Eun-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.1 s.45
    • /
    • pp.127-135
    • /
    • 2007
  • As the Internet is used widely, criminal offense that use computer is increasing, and an information security technology to remove this crime is becoming competitive power of the country. In this paper, we suggest network-based intrusion detection system that use fuzzy expert system. This system can decide quick intrusion decision from attack pattern applying fuzzy rule through the packet classification method that is done similarity of protocol and fixed time interval. Proposed system uses fuzzy logic to detect attack from network traffic, and gets analysis result that is automated through fuzzy reasoning. In present network environment that must handle mass traffic, this system can reduce time and expense of security

  • PDF

Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection (심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1542-1550
    • /
    • 2019
  • Legacy studies for classifying arrhythmia have been studied to improve the accuracy of classification, Neural Network, Fuzzy, etc. Deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose optimal parameter extraction method based on a deep learning. For this purpose, R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 97.84% in PVC classification.

Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases (강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계)

  • Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.586-591
    • /
    • 2014
  • In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.

FUZZY LOGIC KNOWLEDGE SYSTEMS AND ARTIFICIAL NEURAL NETWORKS IN MEDICINE AND BIOLOGY

  • Sanchez, Elie
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.9-25
    • /
    • 1991
  • This tutorial paper has been written for biologists, physicians or beginners in fuzzy sets theory and applications. This field is introduced in the framework of medical diagnosis problems. The paper describes and illustrates with practical examples, a general methodology of special interest in the processing of borderline cases, that allows a graded assignment of diagnoses to patients. A pattern of medical knowledge consists of a tableau with linguistic entries or of fuzzy propositions. Relationships between symptoms and diagnoses are interpreted as labels of fuzzy sets. It is shown how possibility measures (soft matching) can be used and combined to derive diagnoses after measurements on collected data. The concepts and methods are illustrated in a biomedical application on inflammatory protein variations. In the case of poor diagnostic classifications, it is introduced appropriate ponderations, acting on the characterizations of proteins, in order to decrease their relative influence. As a consequence, when pattern matching is achieved, the final ranking of inflammatory syndromes assigned to a given patient might change to better fit the actual classification. Defuzzification of results (i.e. diagnostic groups assigned to patients) is performed as a non fuzzy sets partition issued from a "separating power", and not as the center of gravity method commonly employed in fuzzy control. It is then introduced a model of fuzzy connectionist expert system, in which an artificial neural network is designed to build the knowledge base of an expert system, from training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the connections: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through MIN-MAX fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feed forward network is described and illustrated in the same biomedical domain as in the first part.

  • PDF

A Study on Image Evaluation System based on Prototype Theory (프로토타입 이론을 적용한 계층적 이미지 계측시스템)

  • 김돈한
    • Archives of design research
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • In order to design the products that impression or emotional taste influence the purchase, feedback is necessary as useful data for better idea sketches through users emotional evaluation in early stage of design process. On the other hand, it was required to make judgments individually in previous image evaluations for emotional evaluations such as semantic differential method (SD method) that objects have been considered as classified tendency. However those SD methods are not enough to reflect flexible human capability with similarity judgment in object perceptual process. Therefore, this study proposes a classification of stimulus based on intuitive judgment and a hierarchical image evaluation method based on analysis of hierarchical process and fuzzy integration. The evaluation will be conducted through the order of process, intuitive classification of objective stimulus and items, definition of representatives in each class. Evaluation for each image of the stimulus, calculation of prior raking based on fuzzy integration. The evaluation supportive software is developed to conduct this evaluation process under interactive environments.

  • PDF

Research on the Classification Model of Similarity Malware using Fuzzy Hash (퍼지해시를 이용한 유사 악성코드 분류모델에 관한 연구)

  • Park, Changwook;Chung, Hyunji;Seo, Kwangseok;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.6
    • /
    • pp.1325-1336
    • /
    • 2012
  • In the past about 10 different kinds of malicious code were found in one day on the average. However, the number of malicious codes that are found has rapidly increased reachingover 55,000 during the last 10 year. A large number of malicious codes, however, are not new kinds of malicious codes but most of them are new variants of the existing malicious codes as same functions are newly added into the existing malicious codes, or the existing malicious codes are modified to evade anti-virus detection. To deal with a lot of malicious codes including new malicious codes and variants of the existing malicious codes, we need to compare the malicious codes in the past and the similarity and classify the new malicious codes and the variants of the existing malicious codes. A former calculation method of the similarity on the existing malicious codes compare external factors of IPs, URLs, API, Strings, etc or source code levels. The former calculation method of the similarity takes time due to the number of malicious codes and comparable factors on the increase, and it leads to employing fuzzy hashing to reduce the amount of calculation. The existing fuzzy hashing, however, has some limitations, and it causes come problems to the former calculation of the similarity. Therefore, this research paper has suggested a new comparison method for malicious codes to improve performance of the calculation of the similarity using fuzzy hashing and also a classification method employing the new comparison method.

Implementation of a Particle Swarm Optimization-based Classification Algorithm for Analyzing DNA Chip Data

  • Han, Xiaoyue;Lee, Min-Soo
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.134-135
    • /
    • 2011
  • DNA chips are used for experiments on genes and provide useful information that could be further analyzed. Using the data extracted from the DNA chips to find useful patterns or information has become a very important issue. In this paper, we explain the application developed for classifying DNA chip data using a classification method based on the Particle Swarm Optimization (PSO) algorithm. Considering that DNA chip data is extremely large and has a fuzzy characteristic, an algorithm that imitates the ecosystem such as the PSO algorithm is suitable to be used for analyzing such data. The application enables researchers to customize the PSO algorithm parameters and see detail results of the classification rules.

Negative Selection Algorithm for DNA Sequence Classification

  • Lee, Dong Wook;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.231-235
    • /
    • 2004
  • According to revealing the DNA sequence of human and living things, it increases that a demand on a new computational processing method which utilizes DNA sequence information. In this paper we propose a classification algorithm based on negative selection of the immune system to classify DNA patterns. Negative selection is the process to determine an antigenic receptor that recognize antigens, nonself cells. The immune cells use this antigen receptor to judge whether a self or not. If one composes n group of antigenic receptor for n different patterns, they can classify into n patterns. In this paper we propose a pattern classification algorithm based on negative selection in nucleotide base level and amino acid level.