• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.022 seconds

Tire Tread Pattern Classification Using Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘을 이용한 타이어 접지면 패턴의 분류)

  • Kang, Yoon-Kwan;Jung, Soon-Won;Bae, Sang-Wook;Park, Tae-Hong;Kim, Min-Gi;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.439-441
    • /
    • 1993
  • A tire tread pattern recognition scheme of which the pattern recognition algorithm is designed based on the fuzzy hierarchical clustering method is proposed and compared with the scheme based on the conventional FCM. The features are extracted from the binary images of the tire tread patterns. In the proposed scheme, the protoypes are obtained more easily and schematically than obtained prototypes using FCM. The experimental results of classification for the practical situations are given and shows the usefulness of the proposed scheme.

  • PDF

Discretization of Numerical Attributes and Approximate Reasoning by using Rough Membership Function) (러프 소속 함수를 이용한 수치 속성의 이산화와 근사 추론)

  • Kwon, Eun-Ah;Kim, Hong-Gi
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.545-557
    • /
    • 2001
  • In this paper we propose a hierarchical classification algorithm based on rough membership function which can reason a new object approximately. We use the fuzzy reasoning method that substitutes fuzzy membership value for linguistic uncertainty and reason approximately based on the composition of membership values of conditional sttributes Here we use the rough membership function instead of the fuzzy membership function It can reduce the process that the fuzzy algorithm using fuzzy membership function produces fuzzy rules In addition, we transform the information system to the understandable minimal decision information system In order to do we, study the discretization of continuous valued attributes and propose the discretization algorithm based on the rough membership function and the entropy of the information theory The test shows a good partition that produce the smaller decision system We experimented the IRIS data etc. using our proposed algorithm The experimental results with IRIS data shows 96%~98% rate of classification.

  • PDF

EMG Pattern Classification using Soft Computing Techniques and Its Application to the Control of a Rehabilitation Robotic Arm (소프트 컴퓨팅 기법을 이용한 근전도 신호의 패턴 분류와 재활 로봇 팔 제어에의 응용)

  • Han, Jeong-Su;Kim, Jong-Seong;Song, Won-Gyeong;Bang, Won-Cheol;Lee, Hui-Yeong;Byeon, Jeung-Nam
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.50-63
    • /
    • 2000
  • In this paper, a new EMG pattern classification method based on soft computing techniques is proposed to help the disabled and the elderly handle rehabilitation robotic arm systems. First, it is shown that EMG is more useful than existing input devices such as voice, a laser pointer and a keypad in view of naturality, extensibility, and applicability. Then, a new procedure is proposed to select the minimal feature set. As methods of classifying the pre-defined motions, a fuzzy pattern classification and fuzzy min-max neural networks (FMMNN) are designed using the selected features. As results, the motions are recognized with success rates of 83 percent and 90 Percent using fuzzy pattern classification and FMMNN, respectively.

  • PDF

Design of Precipitation/non-precipitation Pattern Classification System based on Neuro-fuzzy Algorithm using Meteorological Radar Data : Instance Classifier and Echo Classifier (기상레이더를 이용한 뉴로-퍼지 알고리즘 기반 강수/비강수 패턴분류 시스템 설계 : 사례 분류기 및 에코 분류기)

  • Ko, Jun-Hyun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1114-1124
    • /
    • 2015
  • In this paper, precipitation / non-precipitation pattern classification of meteorological radar data is conducted by using neuro-fuzzy algorithm. Structure expression of meteorological radar data information is analyzed in order to effectively classify precipitation and non-precipitation. Also diverse input variables for designing pattern classifier could be considered by exploiting the quantitative as well as qualitative characteristic of meteorological radar data information and then each characteristic of input variables is analyzed. Preferred pattern classifier can be designed by essential input variables that give a decisive effect on output performance as well as model architecture. As the proposed model architecture, neuro-fuzzy algorithm is designed by using FCM-based radial basis function neural network(RBFNN). Two parts of classifiers such as instance classifier part and echo classifier part are designed and carried out serially in the entire system architecture. In the instance classifier part, the pattern classifier identifies between precipitation and non-precipitation data. In the echo classifier part, because precipitation data information identified by the instance classifier could partially involve non-precipitation data information, echo classifier is considered to classify between them. The performance of the proposed classifier is evaluated and analyzed when compared with existing QC method.

Classification method of chronic gastritis by modeling of pulse signal (맥파 모델링을 통한 만성위염 분류 기법)

  • Choi, Sang-Ho;Shin, Ki-Young;Shin, Jitae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.144-151
    • /
    • 2012
  • Chronic gastritis is the disease that is occuring in one in every 10 persons in Korea. In western medicine, endoscopy is needed to diagnose chronic gastritis, but it causes patients a pain and budget of expense. According to the TEM (Traditional Eastern Medicine), on the other hand, the 'Guan' position of the right wrist is related to a stomach. Thus we can diagnosis chronic gastritis by analyzing of pulse signal. However, pulse signal diagnosis is depended on oriental doctor's knowledge and experience. In this study, a systematic approach is proposed to analyze the computerized pulse signal. The pulse signals are firstly pre-processed, Gaussian model is adopted to fit the pulse signal, and then some related parameters are extracted from the model. Consequently, disease-sensitive parameters are selected by T-test and statistical difference. Finally, the selected parameters are entered into a Fuzzy C-Means (FCM) algorithm for classification. Classification results show that healthy persons and chronic gastritis patients are 95% and 87%, respectively.

Intelligent Approach for Android Malware Detection

  • Abdulla, Shubair;Altaher, Altyeb
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2964-2983
    • /
    • 2015
  • As the Android operating system has become a key target for malware authors, Android protection has become a thriving research area. Beside the proved importance of system permissions for malware analysis, there is a lot of overlapping in permissions between malware apps and goodware apps. The exploitation of them effectively in malware detection is still an open issue. In this paper, to investigate the feasibility of neuro-fuzzy techniques to Android protection based on system permissions, we introduce a self-adaptive neuro-fuzzy inference system to classify the Android apps into malware and goodware. According to the framework introduced, the most significant permissions that characterize optimally malware apps are identified using Information Gain Ratio method and encapsulated into patterns of features. The patterns of features data is used to train and test the system using stratified cross-validation methodologies. The experiments conducted conclude that the proposed classifier can be effective in Android protection. The results also underline that the neuro-fuzzy techniques are feasible to employ in the field.

A Corner Matching Algorithm with Uncertainty Handling Capability

  • Lee, Kil-jae;Zeungnam Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.228-233
    • /
    • 1997
  • An efficient corner matching algorithm is developed to minimize the amount of calculation. To reduce the amount of calculation, all available information from a corner detector is used to make model. This information has uncertainties due to discretization noise and geometric distortion, and this is represented by fuzzy rule base which can represent and handle the uncertainties. Form fuzzy inference procedure, a matched segment list is extracted, and resulted segment list is used to calculate the transformation between object of model and scene. To reduce the false hypotheses, a vote and re-vote method is developed. Also an auto tuning scheme of the fuzzy rule base is developed to find out the uncertainties of features from recognized results automatically. To show the effectiveness of the developed algorithm, experiments are conducted for images of real electronic components.

  • PDF

On a Novel Way of Processing Data that Uses Fuzzy Sets for Later Use in Rule-Based Regression and Pattern Classification

  • Mendel, Jerry M.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper presents a novel method for simultaneously and automatically choosing the nonlinear structures of regressors or discriminant functions, as well as the number of terms to include in a rule-based regression model or pattern classifier. Variables are first partitioned into subsets each of which has a linguistic term (called a causal condition) associated with it; fuzzy sets are used to model the terms. Candidate interconnections (causal combinations) of either a term or its complement are formed, where the connecting word is AND which is modeled using the minimum operation. The data establishes which of the candidate causal combinations survive. A novel theoretical result leads to an exponential speedup in establishing this.

Fuzzy Training Based on Segmentation Using Spatial Region Growing

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.353-359
    • /
    • 2004
  • This study proposes an approach to unsupervisedly estimate the number of classes and the parameters of defining the classes in order to train the classifier. In the proposed method, the image is segmented using a spatial region growing based on hierarchical clustering, and fuzzy training is then employed to find the sample classes that well represent the ground truth. For cluster validation, this approach iteratively estimates the class-parameters in the fuzzy training for the sample classes and continuously computes the log-likelihood ratio of two consecutive class-numbers. The maximum ratio rule is applied to determine the optimal number of classes. The experimental results show that the new scheme proposed in this study could be used to select the regions with different characteristics existed on the scene of observed image as an alternative of field survey that is so expensive.

Development of an Adaptive Neuro-Fuzzy Techniques based PD-Model for the Insulation Condition Monitoring and Diagnosis

  • Kim, Y.J.;Lim, J.S.;Park, D.H.;Cho, K.B.
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.1-8
    • /
    • 1998
  • This paper presents an arificial neuro-fuzzy technique based prtial discharge (PD) pattern classifier to power system application. This may require a complicated analysis method employ -ing an experts system due to very complex progressing discharge form under exter-nal stress. After referring briefly to the developments of artificical neural network based PD measurements, the paper outlines how the introduction of new emerging technology has resulted in the design of a number of PD diagnostic systems for practical applicaton of residual lifetime prediction. The appropriate PD data base structure and selection of learning data size of PD pattern based on fractal dimentsional and 3-D PD-normalization, extraction of relevant characteristic fea-ture of PD recognition are discussed. Some practical aspects encountered with unknown stress in the neuro-fuzzy techniques based real time PD recognition are also addressed.

  • PDF