• Title/Summary/Keyword: fuzzy PID control

Search Result 432, Processing Time 0.03 seconds

A FUZZY PID Control of Supply Duct Outlet Air Temperature for PEM (FUZZY PID 방법을 이용한 개별 공조시스템의 급기온도 제어)

  • 장영준;박영철;정광섭;한화택;이정재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.278-284
    • /
    • 2002
  • The work presented here provides a control of the supply duct outlet air temperature in PEM (personal environment module) using fuzzy PID controller. In previous work, PID control systems were used, but the result shows that the outlet air temperature and electric heater regulating voltage were oscillated. Fuzzy PID control systems are designed to improve the system response obtained using PID control and implemented experimentally Also, PID controller and fuzzy controller without PID logic are provided to compare the result with that of the fuzzy PID controller. Data obtained shows that the fuzzy PID control system satisfies the design criteria and works proper1y in controlling the supply air temperature. Also it has bettor performance than the previous result obtained using PID control.

Fuzzy PID Controller Design for Tracking Control (퍼지PID제어를 이용한 추종 제어기 설계)

  • 김봉주;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.68-68
    • /
    • 2000
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF

Design of Fuzzy Precompensated PID Controller for Load Frequency Control of Power System using Genetic Algorithm (유전 알고리즘을 이용한 전력계통의 부하주파수 제어를 위한 퍼지 전 보상 PID 제어기 설계)

  • Jeong, Hyeong-Hwan;Wang, Yong-Pil;Lee, Jeong-Pil;Jeong, Mun-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.2
    • /
    • pp.62-69
    • /
    • 2000
  • In this paper, we design a GA-fuzzy precompensated PID controller for the load frequency control of two-area interconnected power system. Here, a fuzzy precompensated PID controller is designed as a fuzzy logic-based precompensation approach for PID controller. This scheme is easily implemented simply by adding a fuzzy precompensator to an existing PID controller. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Simulation results show that the proposed control technique is superior to a conventional PID control and a fuzzy precompensated PID control in dynamic responses about the load disturbances of power system and is convinced robustness reliableness in view of structure.

  • PDF

PID control and fuzzy control of hybrid magnetic levitation system (복합자석형 자기부상차량의 PID제어와 Fuzzy제어)

  • 권병일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.699-703
    • /
    • 1991
  • A magnetic levitation system with hybrid magnets, which is composed of permanent magnets and electromagnets, consumes less power than the conventional attraction type system. In this paper, we propose PID controller and PID-Fuzzy controller for hybrid magnet. We first present "constant gap" control technology with PID controller. Secondly, "zero power" control technology with PID-Fuzzy hybrid controller is presented.roller is presented.

  • PDF

Design of Fuzzy PID Controller for Tracking Control (퍼지 PID 제어를 이용한 추종 제어기 설계)

  • Kim, Bong--Joo;Chung, Chung-Chao
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.622-631
    • /
    • 2001
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF

Nonlinear Hydraulic System Control Using Fuzzy PID Control Technique (퍼지 PID 제어 기법을 이용한 비선형 유압시스템의 제어)

  • 박장호;김종화;류기석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.69-69
    • /
    • 2000
  • Control systems using a hydraulic cylinder as an actuator are modeled to a nonlinear system owing to varying of moments and nonlinearities of hydraulic itself. In this paper, we want to control nonlinear hydraulic systems by adopting the fuzzy PID control technique which include nonlinear time varying control parameters. To do this, we propose the design method of fuzzy Pm controller and in order to assure effectiveness of fuzzy PID controller, computer simulations were executed for the control system.

  • PDF

A Study of Position Control Performance Enhancement in a Real-Time OS Based Laparoscopic Surgery Robot Using Intelligent Fuzzy PID Control Algorithm (Intelligent Fuzzy PID 제어 알고리즘을 이용한 실시간 OS 기반 복강경 수술 로봇의 위치 제어 성능 강화에 관한 연구)

  • Song, Seung-Joon;Park, Jun-Woo;Shin, Jung-Wook;Lee, Duck-Hee;Kim, Yun-Ho;Choi, Jae-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.518-526
    • /
    • 2008
  • The fuzzy self-tuning PID controller is a PID controller with a fuzzy logic mechanism for tuning its gains on-line. In this structure, the proportional, integral and derivative gains are tuned on-line with respect to the change of the output of system under control. This paper deals with two types of fuzzy self-tuning PID controllers, rule-based fuzzy PID controller and learning fuzzy PID controller. As a medical application of fuzzy PID controller, the proposed controllers were implemented and evaluated in a laparoscopic surgery robot system. The proposed fuzzy PID structures maintain similar performance as conventional PID controller, and enhance the position tracking performance over wide range of varying input. For precise approximation, the fuzzy PID controller was realized using the linear reasoning method, a type of product-sum-gravity method. The proposed controllers were compared with conventional PID controller without fuzzy gain tuning and was proved to have better performance in the experiment.

Fuzzy-based PID Controller for Cascade Process Control

  • Tummaruckwattana, S.;Pannil, P.;Chaikla, A.;Tirasesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.268-271
    • /
    • 2004
  • This paper describes the development of a fuzzy logic control based on PID controller to improve the performances of the control system using conventional PID controller for the cascade process control systems. The structure of the proposed control system consists of two fuzzy-based PID controllers. One is used to eliminate the input disturbances of the inner loop and the other is used to regulate output response of the outer loop. The fuzzy PID design is derived from the linear-time continuous function of the conventional PID controller. The performance of the proposed controller is verified by MATLAB/SIMULINK simulation. Results of simulation studies demonstrates the outstanding of the control system using fuzzy-based PID controller in terms of reduced overshoot and fast response compared with the conventional PID controller.

  • PDF

A Study on the Performance Improvement of a Nonlinear Fuzzy PID Controller (비선형 퍼지 PID 제어기의 성능 개선에 관한 연구)

  • 김인환;이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.852-861
    • /
    • 2003
  • In this paper, in order to improve the disadvantages of the fixed design-parameter fuzzy PID controller. a new fuzzy PID controller named a variable design-parameter fuzzy PID controller is suggested. The main characteristic of the suggested controller is to adjust design-parameters of the controller by comparing magnitudes between fuzzy controller inputs at each sampling time when controller inputs are measured. As a result. all fuzzy input partitioned spaces converge within a time-varying normalization scale. and the resultant PID control action can always be applied precisely regardless of operating input magnitudes. In order to verify the effectiveness of the suggested controller. several a computer simulations for a nonlinear system are executed and the control parameters of the variable design-parameter fuzzy PID controller are throughly analyzed.

High Precision Pressure Control of a Pneumatic Chamber using a Hybrid Fuzzy PID Controller

  • Liu, Hao;Lee, Jae-Cheon;Li, Bao-Ren
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.8-13
    • /
    • 2007
  • A hybrid fuzzy PID controller for a pneumatic chamber is proposed in this paper. First, a mathematical model of a pneumatic pressure servocontrol system was developed where separate implementations of a PID controller and a fuzzy controller were made. The experimental results using a step input signal revealed that the PID controller accurately controlled the steady-state pressure but did not robustly handle parameter variations in the system while the fuzzy controller provided a fast rise time and low overshoot of the pressure in the system. In order to attain the advantages of both the fuzzy and PID controllers, a hybrid control scheme was developed. The experimental results show that the hybrid fuzzy PID controller proposed in this study does indeed possess the advantages of both PID and fuzzy controllers. Hence, it can be concluded that the hybrid fuzzy PID controller is suited for high-precision control of pressure in a pneumatic chamber.