• Title/Summary/Keyword: fuzzy PI and PI controllers

Search Result 62, Processing Time 0.028 seconds

Control of Islanded Microgrid Using Fuzzy Logic (Fuzzy Logic을 이용한 마이크로그리드의 독립운전 제어)

  • Lee, Heung-Seok;Park, June Ho;Koo, Bon-Gil;Kim, Jong-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.727-737
    • /
    • 2014
  • This paper presents the design of Fuzzy PI controller that is used at BESS(Battery Energy Storage System) charging and discharging process for islanded operation in microgrid. Most of the PI controllers have fixed PI gains, but real-time updated gains are applied to PI controller using Fuzzy logic in this paper. The performances of suggested Fuzzy PI controller are simulated by PSCAD/EMTDC. As a result, output characteristics of ESS applied real-time updated gains to PI controller are faster than those of using fixed gains.

Development of Self Tuning and Adaptive Fuzzy Controller to control of Induction Motor (유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.33-42
    • /
    • 2010
  • The induction motor drive applied to field oriented control is widely used in industry applications. However, it is deceased performance and authenticity by saturation, temperature changing, disturbance and parameters changing because modeling of induction motor is nonlinear and complex. In order to control variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good performance over a wide range of operation, even under ideal field oriented conditions. This paper proposes self tuning PI controller based on fuzzy-neural network(FNN)-PI controller that is implemented using fuzzy control, neural network, and adaptive fuzzy controller(AFC). Also, this paper proposes estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FNN-PI, AFC and ANN controller. Also, this paper proposes the anlysis results to verify the effectiveness of controller.

PI and Fuzzy Logic Controller Based 3-Phase 4-Wire Shunt Active Filters for the Mitigation of Current Harmonics with the Id-Iq Control Strategy

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.914-921
    • /
    • 2011
  • Commencing with incandescent light bulbs, every load today creates harmonics. Unfortunately, these loads vary with respect to their amount of harmonic content and their response to problems caused by harmonics. The prevalent difficulties with harmonics are voltage and current waveform distortions. In addition, Electronic equipment like computers, battery chargers, electronic ballasts, variable frequency drives, and switching mode power supplies generate perilous amounts of harmonics. Issues related to harmonics are of a greater concern to engineers and building designers because they do more than just distort voltage waveforms, they can overheat the building wiring, cause nuisance tripping, overheat transformer units, and cause random end-user equipment failures. Thus power quality is becoming more and more serious with each passing day. As a result, active power filters (APFs) have gained a lot of attention due to their excellent harmonic compensation. However, the performance of the active filters seems to have contradictions with different control techniques. The main objective of this paper is to analyze shunt active filters with fuzzy and pi controllers. To carry out this analysis, active and reactive current methods ($i_d-i_q$) are considered. Extensive simulations were carried out. The simulations were performed under balance, unbalanced and non sinusoidal conditions. The results validate the dynamic behavior of fuzzy logic controllers over PI controllers.

Reduction of Fuzzy Rules and Membership Functions and Its Application to Fuzzy PI and PD Type Controllers

  • Chopra Seema;Mitra Ranajit;Kumar Vijay
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.438-447
    • /
    • 2006
  • Fuzzy controller's design depends mainly on the rule base and membership functions over the controller's input and output ranges. This paper presents two different approaches to deal with these design issues. A simple and efficient approach; namely, Fuzzy Subtractive Clustering is used to identify the rule base needed to realize Fuzzy PI and PD type controllers. This technique provides a mechanism to obtain the reduced rule set covering the whole input/output space as well as membership functions for each input variable. But it is found that some membership functions projected from different clusters have high degree of similarity. The number of membership functions of each input variable is then reduced using a similarity measure. In this paper, the fuzzy subtractive clustering approach is shown to reduce 49 rules to 8 rules and number of membership functions to 4 and 6 for input variables (error and change in error) maintaining almost the same level of performance. Simulation on a wide range of linear and nonlinear processes is carried out and results are compared with fuzzy PI and PD type controllers without clustering in terms of several performance measures such as peak overshoot, settling time, rise time, integral absolute error (IAE) and integral-of-time multiplied absolute error (ITAE) and in each case the proposed schemes shows an identical performance.

Identification and Control of Command Panoramic Sight System (조준경안정화시스템의 인식과 제어)

  • Kim, Dae-Woon;Cheon, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.14-21
    • /
    • 2007
  • Sight Stabilization system is the control system to preserve Line of Sight for the targets though many nonlinear disturbances and vibrations are generated. In this paper, we identified Stabilization system using RLS algorithm, one of the system identification algorithm and found out the modeling of system. Considering nonlinear operational condition this paper proposes two Knowledge-base controllers - Fuzzy controller, Fuzzy PI Gain Scheduling controller, and simulates the performances of proposed controllers compare with Lead PI controller being used in Sight system of NFIV.

Synchronous Position Controller Design of Hydraulic Cylinders for a Sluice Gate Using Fuzzy PI (퍼지 PI를 이용한 배수갑문용 유압실린더의 위치 및 동기 제어기 설계)

  • Choi, Byung-Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.117-120
    • /
    • 2014
  • In general a main technology of control a sluice gate is accurate synchronous position control for the two cylinders when they are moving with the sluice gate together over 10[m]. Because the nonlinear friction and the unconstant supply flow. Cylinders' displacement will be different. In this case the sluice gate may be deformed and abraded, and even the sluice gate may unable to work. In order to design the controller for this system, we designed two kinds of Fuzzy PI controllers. Fuzzy PI position controller and Fuzzy PI synchronous controller have been designed. We show some simulation results for its availability.

Robust Fuzzy Logic Current and Speed Controllers for Field-Oriented Induction Motor Drive

  • El-Sousy, Fayez F.M.;Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.115-123
    • /
    • 2003
  • This paper presents analysis, design and simulation for the indirect field orientation control (IFOC) of induction machine drive system. The dynamic performance of the IFOC under nominal and detuned parameters of the induction machine is established. A conventional proportional plus integral-derivative (PI-D) two-degree-of-freedom controller (2DOFC) is designed and analysed for an ideal IFOC induction machine drive at nominal parameters with the desired dynamic response. Varying the induction machine parameters causes a degredation in the dynamic response for disturbance rejection and tracking performance with PI-D 2DOF speed controller. Therefore, conventional controllers can nut meet a wide range of speed tracking performance under parameter variations. To achieve high- dynamic performance, a proposed robust fuzzy logic controllers (RFLC) for d-axis rotor flux, d-q axis stator currents and rotor speed have been designed and analysed. These controllers provide robust tracking and disturbance rejection performance when detuning occurres and improve the dynamic behavior. The proposed REL controllers provide a fast and accurate dynamic response in tracking and disturbance rejection characteristics under parameter variations. Computer simulation results demonstrate the effectiveness of the proposed REL controllers and a robust performance is obtained fur IFOC induction machine drive system.

HBPI Controller of Induction Motor using Fuzzy Adaptive Mechanism (퍼지 적응 메카니즘을 이용한 유도전동기의 HBPI 제어기)

  • Nam Su-Myung;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.395-401
    • /
    • 2005
  • This paper presents Hybrid PI(HBPI) controller of induction motor drive using fuzzy control. In general, PI controllers used in computer numerically controlled machines process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, HBPI controller proposes a new method based self tuning PI controller. HBPI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of induction motor are presented to show the effectiveness of the proposed gam tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Application of Fuzzy PI Control Algorithm as Stator Power Controller of a Double-Fed Induction Machine in Wind Power Generation Systems

  • Chung, Gyo-Bum;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.109-116
    • /
    • 2009
  • This paper addresses the output control of a utility-connected double-fed induction machine (DFIM) for wind power generation systems (WPGS). DFIM has a back-to-back converter to control outputs of DFIM driven by the wind turbine for WPGS. To supply commercially the power of WPGS to the grid without any problems related to power quality, the real and reactive powers (PQ) at the stator side of DFIM are strictly controlled at the required level, which in this paper is realized with the Fuzzy PI controller based on the field orientation control. For the Sinusoidal Pulse Width Modulation (SPWM) converter connected to the rotor side of DFIG to maintain the controllability of PQ at the state side of DFIM, the DC voltage of the DC link capacitor is also controlled at a certain level with the conventional Proportion-Integral (PI) controller of the real power. In addition, the power quality at the grid connected to the rotor side of DFIM through the back-to-back converter is maintained in a certain level with a PI controller of the reactive power. The controllers for the PQ at the stator side of DFIM, the DC link voltage of the back-to-back inverter and the reactive power at the grid connected to the rotor side of DFIM are designed and simulated in the PSIM program, of which the result verifies the performance of the proposed controllers.

Fuzzy Based Control Gain Auto-Tuning of Servo Driver (퍼지를 이용한 서보드라이버의 제어 개인 자동 조정)

  • Kong, Young-Bae;Seo, Ho-Joon;Park, Gwi-Tae;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.541-543
    • /
    • 1998
  • Generally, PI control is simple and easy to implement and gains of PI control are determined by specifying a dynamics of the servo driver system. However, the gain-tuning is so difficult that it is relied on an expert's effort. This paper presents a gain auto-tuning method for PI controllers based on a fuzzy inference mechanism. First, the proposed fuzzy inference system identifies a system moment of inertia and adjusts control gains by using the difference in speed responses between a real plant and a reference model. Second, this paper proposes an improved fuzzy PI controller. To reduce the speed overshoot, we adapt a control method that selects a proper PI gains with respect to the load inertia variation. To prove the validity of the proposed gain tuning algorithm and the feasibility of the servo drive, a high performance servo drive will be implemented by DSP(TMS320C31) and intelligent power module (IPM). The proposed controller is applied to the speed control of the 300W AC servo motor. Some simulations and experimental results show that the proposed fuzzy PI controller is more robust than the conventional PI controller against the load inertia variation.

  • PDF