• Title/Summary/Keyword: fuzzy K means

Search Result 430, Processing Time 0.029 seconds

Design of RBFNN-based Emotional Lighting System Using RGBW LED (RGBW LED 이용한 RBFNN 기반 감성조명 시스템 설계)

  • Lim, Sung-Joon;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.696-704
    • /
    • 2013
  • In this paper, we introduce the LED emotional lighting system realized with the aid of both intelligent algorithm and RGB LED combined with White LED. Generally, the illumination is known as a design factor to form the living place that affects human's emotion and action in the light- space as well as the purpose to light up the specific space. The LED emotional lighting system that can express emotional atmosphere as well as control the quantity of light is designed by using both RGB LED to form the emotional mood and W LED to get sufficient amount of light. RBFNNs is used as the intelligent algorithm and the network model designed with the aid of LED control parameters (viz. color coordinates (x and y) related to color temperature, and lux as inputs, RGBW current as output) plays an important role to build up the LED emotional lighting system for obtaining appropriate color space. Unlike conventional RBFNNs, Fuzzy C-Means(FCM) clustering method is used to obtain the fitness values of the receptive function, and the connection weights of the consequence part of networks are expressed by polynomial functions. Also, the parameters of RBFNN model are optimized by using PSO(Particle Swarm Optimization). The proposed LED emotional lighting can save the energy by using the LED light source and improve the ability to work as well as to learn by making an adequate mood under diverse surrounding conditions.

Detection of Text Candidate Regions using Region Information-based Genetic Algorithm (영역정보기반의 유전자알고리즘을 이용한 텍스트 후보영역 검출)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.70-77
    • /
    • 2008
  • This paper proposes a new text candidate region detection method that uses genetic algorithm based on information of the segmented regions. In image segmentation, a classification of the pixels at each color channel and a reclassification of the region-unit for reducing inhomogeneous clusters are performed. EWFCM(Entropy-based Weighted C-Means) algorithm to classify the pixels at each color channel is an improved FCM algorithm added with spatial information, and therefore it removes the meaningless regions like noise. A region-based reclassification based on a similarity between each segmented region of the most inhomogeneous cluster and the other clusters reduces the inhomogeneous clusters more efficiently than pixel- and cluster-based reclassifications. And detecting text candidate regions is performed by genetic algorithm based on energy and variance of the directional edge components, the number, and a size of the segmented regions. The region information-based detection method can singles out semantic text candidate regions more accurately than pixel-based detection method and the detection results will be more useful in recognizing the text regions hereafter. Experiments showed the results of the segmentation and the detection. And it confirmed that the proposed method was superior to the existing methods.

Health Risk Management using Feature Extraction and Cluster Analysis considering Time Flow (시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스 리스크 관리)

  • Kang, Ji-Soo;Chung, Kyungyong;Jung, Hoill
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.99-104
    • /
    • 2021
  • In this paper, we propose health risk management using feature extraction and cluster analysis considering time flow. The proposed method proceeds in three steps. The first is the pre-processing and feature extraction step. It collects user's lifelog using a wearable device, removes incomplete data, errors, noise, and contradictory data, and processes missing values. Then, for feature extraction, important variables are selected through principal component analysis, and data similar to the relationship between the data are classified through correlation coefficient and covariance. In order to analyze the features extracted from the lifelog, dynamic clustering is performed through the K-means algorithm in consideration of the passage of time. The new data is clustered through the similarity distance measurement method based on the increment of the sum of squared errors. Next is to extract information about the cluster by considering the passage of time. Therefore, using the health decision-making system through feature clusters, risks able to managed through factors such as physical characteristics, lifestyle habits, disease status, health care event occurrence risk, and predictability. The performance evaluation compares the proposed method using Precision, Recall, and F-measure with the fuzzy and kernel-based clustering. As a result of the evaluation, the proposed method is excellently evaluated. Therefore, through the proposed method, it is possible to accurately predict and appropriately manage the user's potential health risk by using the similarity with the patient.

Remote Sensing Information Models for Sediment and Soil

  • Ma, Ainai
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.739-744
    • /
    • 2002
  • Recently we have discovered that sediments should be separated from lithosphere, and soil should be separated from biosphere, both sediment and soil will be mixed sediments-soil-sphere (Seso-sphere), which is using particulate mechanics to be solved. Erosion and sediment both are moving by particulate matter with water or wind. But ancient sediments will be erosion same to soil. Nowadays, real soil has already reduced much more. Many places have only remained sediments that have ploughed artificial farming layer. Thus it means sediments-soil-sphere. This paper discusses sediments-soil-sphere erosion modeling. In fact sediments-soil-sphere erosion is including water erosion, wind erosion, melt-water erosion, gravitational water erosion, and mixed erosion. We have established geographical remote sensing information modeling (RSIM) for different erosion that was using remote sensing digital images with geographical ground truth water stations and meteorological observatories data by remote sensing digital images processing and geographical information system (GIS). All of those RSIM will be a geographical multidimensional gray non-linear equation using mathematics equation (non-dimension analysis) and mathematics statistics. The mixed erosion equation is more complex that is a geographical polynomial gray non-linear equation that must use time-space fuzzy condition equations to be solved. RSIM is digital image modeling that has separated physical factors and geographical parameters. There are a lot of geographical analogous criterions that are non-dimensional factor groups. The geographical RSIM could be automatic to change them analogous criterions to be fixed difference scale maps. For example, if smaller scale maps (1:1000 000) that then will be one or two analogous criterions and if larger scale map (1:10 000) that then will be four or five analogous criterions. And the geographical parameters that are including coefficient and indexes will change too with images. The geographical RSIM has higher precision more than mathematics modeling even mathematical equation or mathematical statistics modeling.

  • PDF

Development of Korean Tissue Probability Map from 3D Magnetic Resonance Images (3차원 MR 영상으로부터의 한국인 뇌조직확률지도 개발)

  • Jung Hyun, Kim;Jong-Min, Lee;Uicheul, Yoon;Hyun-Pil, Kim;Bang Bon, Koo;In Young, Kim;Dong Soo, Lee;Jun Soo, Kwon;Sun I., Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.323-328
    • /
    • 2004
  • The development of group-specific tissue probability maps (TPM) provides a priori knowledge for better result of cerebral tissue classification with regard to the inter-ethnic differences of inter-subject variability. We present sequential procedures of group-specific TPM and evaluate the age effects in the structural differences of TPM. We investigated 100 healthy volunteers with high resolution MRI scalming. The subjects were classified into young (60, 25.92+4.58) and old groups (40, 58.83${\pm}$8.10) according to the age. To avoid any bias from random selected single subject and improve registration robustness, average atlas as target for TPM was constructed from skull-stripped whole data using linear and nonlinear registration of AIR. Each subject was segmented into binary images of gray matter, white matter, and cerebrospinal fluid using fuzzy clustering and normalized into the space of average atlas. The probability images were the means of these binary images, and contained values in the range of zero to one. A TPM of a given tissue is a spatial probability distribution representing a certain subject population. In the spatial distribution of tissue probability according to the threshold of probability, the old group exhibited enlarged ventricles and overall GM atrophy as age-specific changes, compared to the young group. Our results are generally consistent with the few published studies on age differences in the brain morphology. The more similar the morphology of the subject is to the average of the population represented by the TPM, the better the entire classification procedure should work. Therefore, we suggest that group-specific TPM should be used as a priori information for the cerebral tissue classification.

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF

Fire Detection Approach using Robust Moving-Region Detection and Effective Texture Features of Fire (강인한 움직임 영역 검출과 화재의 효과적인 텍스처 특징을 이용한 화재 감지 방법)

  • Nguyen, Truc Kim Thi;Kang, Myeongsu;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.6
    • /
    • pp.21-28
    • /
    • 2013
  • This paper proposes an effective fire detection approach that includes the following multiple heterogeneous algorithms: moving region detection using grey level histograms, color segmentation using fuzzy c-means clustering (FCM), feature extraction using a grey level co-occurrence matrix (GLCM), and fire classification using support vector machine (SVM). The proposed approach determines the optimal threshold values based on grey level histograms in order to detect moving regions, and then performs color segmentation in the CIE LAB color space by applying the FCM. These steps help to specify candidate regions of fire. We then extract features of fire using the GLCM and these features are used as inputs of SVM to classify fire or non-fire. We evaluate the proposed approach by comparing it with two state-of-the-art fire detection algorithms in terms of the fire detection rate (or percentages of true positive, PTP) and the false fire detection rate (or percentages of true negative, PTN). Experimental results indicated that the proposed approach outperformed conventional fire detection algorithms by yielding 97.94% for PTP and 4.63% for PTN, respectively.

Development on Classification Standard of Drought Severity (가뭄심도 분류기준의 개선방안 제시)

  • Kwon, Jinjoo;Ahn, Jaehyun;Kim, Taewoong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.195-204
    • /
    • 2013
  • As drought is phenomenon of nature with unavoidability and repeated characteristic, it is necessary to plan to respond to it in advance and construct drought management system to minimize its damage. This study suggested standard for classification of drought, which is appropriate for our nation to respond to drought by assessing drought severity in the regions for this study. For data collection, 61 locations were selected - the locations keep precipitation data over 30 years of observation. And data for monthly precipitation for 37 years from 1973 were used. Based on this, this study classified unified drought interval into four levels using drought situation phases which are used in government. For standard for classification of drought severity fit to our nation, status of main drought was referred and these are classified based on accumulated probability of drought - 98~100% Exceptional Drought, 94~98% Extreme Drought, 90~94% Severe Drought, 86~90% Moderate Drought. Drought index (SPI, PDSI) was made in descending order and quantitative value of drought index fit to standard of classification for drought severity was calculated. To compare classification results of drought severity of SPI and PDSI with actual drought, comparison by year and month unit were analyzed. As a result, in comparison by year and comparison by month unit of SPI, drought index of each location was mostly identical each other between actual records and analyzed value. But in comparison by month unit of PDSI for same period, actual records did not correspond to analyzed values. This means that further study about mutual supplement for these indexes is necessary.

Vehicle Emergency Lamp Fuzzy Control Systems Using The GPS (GPS를 이용한 자동차 비상등 작동 장치)

  • Kwon, Yunjung;Nam, Sangyep
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.276-281
    • /
    • 2014
  • Necessities of a traffic means work a car in the modern society human to an usability of a life is enjoying. On the other hand, the damage by traffic accident increment the human quotient worked as we were in proportion to the vehicle which increased. Passing an examination moves necessarily on an obstacle to suddenly appear at the fronts if a car travels and the vehicles which stopped suddenly. Dynamic passing an examination about an obstacle turn on Vehicle Emergency Lamp to by hand when is unhurried, and can turn off, but to appear urgently dynamic passing an examination in time human is instinctive, but cannot inform an emergency to a back vehicle, and a rear-end collision occurs. A car we synthesize a speed of a vehicle, and this unit analyzes as we use GPS, and to drive runs Vehicle Emergency Lamp to automatic in the situations that shall turn on emergencies etc. If a speed of a vehicle continuously slows down in too high-speed driving or low-speed driving, or we are stopped, Vehicle Emergency Lamp is always turned on. It was built if we rise again as clearing itself from risk, and a speed of a vehicle judges, and we turn off Vehicle Emergency Lamp to automatic. It runs till rear-end collision sensor operates, and by hand reset does Vehicle Emergency Lamp a driving vehicle collides from behind to a back vehicle or when a driving vehicle was overthrown. It is shortened very much to the chain rear-end collision traffic accident that is a traffic accident of large size if we use this unit. And we did authentication through the experiment which a driver was helpful to unnecessary operation and a relaxed safe driving during drivings.

Sensory Information Processing

  • Yoshimoto, Chiyoshi
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 1985
  • The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70$\pm$1.32mmHg/min)compared to CF dialyzers(4.32$\pm$0.55mmHg/min)(p<0.05). However, there was no observable difference in the UFR between the two dialyzers. Neither APD nor UFR showed any significant increase with an increasing number of reuses for up to more than 20reuses. A substantial number of failures observed in APD(larger than 20mmHe/min)on the reused dialyzers(2 out of 40 CP and S out 26 C-DAK) were attributed to the Possible damage on the fibers. The CF 15-11 HFDs which failed APD test did not show changes in the UFR compared to normal dialyzers indicating that APD is a more sensitive test than UFR test to evaluate the integrity of the fibers. 30527 T00401030527 ^x For quantitative measurement of reflected light from a clinical diagnostic strip, a prototype old reflectance photometer was designed. The strip loader and cassette were made to obtain more accurate reflectance parameters. The strip was illuminated at 45˚c through optical fiber and the intensity of reflected light was determined at rectanguLat angle using a photodiode. The kubelka-munk coefficient and reflection optical density were determined ar four different wavelengths(500, 550, 570 and 610nm) for blood glucose strip. For higher concentration than 300mg/41 about glucose, a saturation state of abforbance was observed at 500, 550 and 570nm. The correlation between glucose concentration and parameters was the best at 610nm. 30535 T00401030535 ^x Radiation-induced fibrosarcoma tumors were grown on the flanks of C3H mice. The mice were divided into two groups. One group was injected with Photofrin II, intravenously (2.5mg/kg body weight). The other group received no Photofrin II. Mice from both groups were irradialed for approximately 15 minutes at 100, 300, or 500 mW/cm2 with the argon (488nm/514.5 nm), dye(628nm) and gold vapor (pulsed 628 nm) laser light. A photosensitizer behaved as an added absorber. Under our experimental conditions, the presence of Photolfrin II increased surface temperature by at least 40% and the temperature rise due to 300 mW/cm2 irradiation exceeded values for hyperthermia. Light and temperature distributions with depth were estimated by a computer model. The model demonstrated the influence of wavelength on the thermal process and proved to be a valuable tool to investigate internal temperature rise. 30536 T00401030536 ^x We investigated the structural geometry of thirty-eight Korean femurs. The purpose of this study is to identify major geometrical differences between Korean femurs 3nd others that we believe belong to Caucasians so that we would be able to get insights into the femoral component design that fits Asians including Koreans. We utilized computerized tomography (CT) images of femurs extracted from cadavers. The CT images were transformed into bitmap data by using a film scanner, and then analyzed by using a commercially available software called Image v.1.0 and a Macintosh IIci computer.The resulting data were compared with already published data. The major results show that the geometry of the Korean femurs is significantly different from that of Caucasians: (1) the anteversion angle and the canal flare index are greater by the amount of approximately 8˚ and 0.5, respectively, (2) the shape of the isthmus cross section is more round, and (3) the distance between the teaser trochanter and the proximal border of the isthmus is shelter by about 15 mm. The results suggested that the femoral component suitable for Asians should be different from the currently-used components designed and manufactured mostly by European or American companies. 30537 T00401030537 ^x It is well known that nonlinear propagation characteristics of the wave in the tissue may give very useful information for the medical diagnoisis. In this paper, a new method to detect nonlinear propagation characteristics of the internal vibration in the tissue for the low frequency mechanical vibration by using bispectral analysis is proposed. In the method, low frequency vibration of f0( = 100Hz) is applied on the surface of the object, and the waveform of the internal vibration x (t) is measured from Doppler frequency modulation of silmultaneously transmitted probing ultrasonic waves. Then, the bispectra of the signal x (t) at the frequencies (f0, f0) and (f0, 2f0) are calculated to estimate the nonlinear propagation characteristics as their magnitude ratio, w here since bispectrum is free from the gaussian additive noise we can get the value with high S/N. Basic experimental system is constructed by using 3.0 MHz probing ultrasonic waves and the several experiments are carried out for some phantoms. Results show the superiority of the proposed method to the conventional method using power spectrum and also its usefulness for the tissue characterization. 30541 T00401030541 ^x This paper describes the implementation of a computerized radial pulse diagnosis by aids of a clinical expert. On this base, we composed of the radial pulse diagnosis system in korean traditional medicine. The system composed of a radial pulse wave detection system and a radial pulse diagnosis system. With a detection system, we detected Inyoung and Cheongu radial pulse wave and processed it. Then, we have got the characteristic parameters of radial pulse wave and also quantified that according to the method of Inyoung-Cheongu Comparison Radial Pulse Diagnosis. We defined the jugement standard of radial pulse diagnosis system and then we confirmed the possibility for realization of automatic radial pulse diagnosis in korean traditional medicine. 30545 T00401030545 ^x Microspheres are expected to be applied to biomedical areas such as solid-phase immunoassays, drug delivery systems, immunomagnetic cell separation. To synthesize microspheres for biomedical application, "two stage shot growth method" was developed. The uniformity ratio of synthesized microspheres was always smaller than 1.05. And the surface charge density (or the number of ionizable functional groups) of the microspheres synthesized by "two stage shot growth method" was 6~13 times higher than that of the microspheres synthesized by conventional seeded batch copolymerization. As a previous step for biomedical application, adsorption experiments of bovine albumin on microspheres were carried out under various conditions. The maximum adsorbed amount was obtained in the neighborhood of pH 4.5. Isoelectric point of bovine albumin is pH 5.0, so experimental result shows that it shifted to acid area. The adsorption isotherm was obtained, the plateau region was always reached at 2.Og/L (bulk concentration of bovine albumin).The effect of the kind and the amount of surface functional group was also examined. 30575 T00401030575 ^x A medical image workstation was developed using multimedia technique. The system based on PC-486DX was designed to acquire medical images produced by medical imaging instruments and related audio information, that is, doctors' reporting results. Input information was processed and analyzed, then the results were presented in the form of graph and animation. All the informations of the system were hierarchically related with the image as the apex. Processing and analysis algorithms were implemented so that the diagnostic accuracy could be improved. The diagnosed information can be transferred for patient diagnosis through LAN(local area network). 30592 T00401030592 ^x In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of 0.1˚c under the spatial resolution of lmrad, the image matrix size of 256 X 240, and tile imaging time of 4 seconds. 30593 T00401030593 ^x In this paper, MIIS (Medical Image Information System) has been designed and implemented using INGRES RDBMS, which is based on a client/server architecture. The implemented system allows users to register and retrieve patient information, medical images and diagnostic reports. It also provides the function to display these information on workstation windows simultaneously by using the designed menu-driven graphic user interface. The medical image compression/decompression techniques are implemented and integrated into the medical image database system for the efficient data storage and the fast access through the network. 30594 T00401030594 ^x In this paper, computerized BEAM was implemented for the space domain analysis of EEG. Trans-formation from temporal summation to two-dimensional mappings is formed by 4 nearest point inter-polaton method. Methods of representation of BEAM are two. One is dot density method which classify brain electrical potential 9 levels by dot density of gray levels and the other is colour method which classify brain electrical 12 levels by red-green colours. In this BEAM, instantaneous change and average energy distribution over any arbitrary time interval of brain electrical activity could be observed and analyzed easily. In the frequency domain, the distribution of energy spectrum of a special band can easily be distinguished normality and abnormality. 30608 T00401030608 ^x Laboratory information system (LIS) is a key tool to manage laboratory data in clinical pathology. Our department has developed an information system for routine hematology using down-sized computer system. We have used an IBM 486 compatible PC with 16MB main memory, 210 MB hard disk drive, 9 RS-232C port and 24 pin dot printer. The operating system and database management system were SCO UNIX and SCO foxbase, respectively. For program development, we used Xbase language provided by SCO foxbase. The C language was used for interface purpose. To make the system use friendly, pull-down menu was used. The system connected to our hospital information system via application program interface (API), so the information related to patient and request details is automatically transmitted to our computer. Our system interfaced with fwd complete blood count analyzers(Sysmex NE-8000 and Coulter STKS) for unidirectional data tansmission from analyzer to computer. The authors suggests that this system based on down-sized computer could provide a progressive approach to total LIS based on local area network, and the implemented system could serve as a model for other hospital's LIS for routine hematology. 30609 T00401030609 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed a composite that is consisted of calcium phosphate and collagen. To use as the structural matrix of the composite, collagen was purified from human umbilical cord. The obtained collagen was treated by pepsin to remove telopeptides, and finally, the immune-free atelocollagen was produced: The cross linked atelocollagen was highly resistant to the collagenase induced collagenolysis. The cross linked collagen demonstrated an improved tensile strength. 30618 T00401030618 ^x This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively. 30619 T00401030619 ^x To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed and produced a composite that is consisted of calcium phosphate and collagen. Human umbilical cord origin pepsin treated type I atelocollagen was used as the structural matrix, by which sintered or non-sintered carbonate apatite was encapsulated to form an inorganic-organic composite. With cross linking atelocollagen by UV ray irradiation, the resistance to both compressive and tensile strength was increased. Collagen degradation by the collagenase induced collagenolysis was also decreased. 30620 T00401030620 ^x We have developed a monoleaflet polymer valve as an inexpensive and viable alternative, especially for short-term use in the ventricular assist device or total artificial heart. The frame and leaflet of the polymer valve were made from polyurethane, To evaluate the hemodynamic performance of the polymer valve a comparative study of flow dynamics past a polymer valve and a St. Jude Medical prosthetic valve under physiological pulsatile flow conditions in vitro was made. Comparisons between the valves were made on the transvalvular pressure drop, regurgitation volume and maximum valve opening area. The polymer valve showed smaller regurgitation volume and transvalvular pressure drop compared to the mechanical valve at higher heart rate. The results showed that the functional characteristics of the polymer valve compared favorably with those of the mechanical valve at higher heart rate. 30621 T00401030621 ^x Explosive evaporative removal process of biological tissue by absorption of a CW laser has been simulated by using gelatin and a multimode Nd:YAG laser. Because the point of maximun temperature of laser-irradiated gelatin exists below the surface due to surface cooling, evaporation at the boiling temperature is made explosively from below the surface. The important parameters of this process are the conduction loss to laser power absorption (defined as the conduction-to-laser power parameter, Nk), the convection heat transfer at the surface to conduction loss (defined as Bi), dimensionless extinction coefficient (defined as Br.), and dimensionless irradiation time (defined as Fo). Dependence of Fo on Nk and Bi has been observed by experiment, and the results have been compared with the numerical results obtained by solving a 2-dimensional conduction equation. Fo and explosion depth (from the surface to the point of maximun temperature) are increased when Nk and Bi are increased.To find out the minimum laser power for explosive evaporative removal process, steady state analysis has been also made. The limit of Nk to induce evaporative removal, which is proportional to the inverse of the laser power, has been obtained. 30622 T00401030622 ^x N1 and N2 gross neural action potentials were measured from the round window of the guinea pig cochlea at the onset of the acoustic stimuli. N1-N2 audiograms were made by means of regulating stimulant intensities in order to produce constant N1-N2 potentials as criteria for different input tone pip frequencies. The lowest threshold was measured with an input tone pip I5 dB SPL in intensity and 12 KHz in frequency when the animal was in normal physiological condition. The procedure of experimental measurements is explained in detail. This experimental approach is very useful for the investigation of the Cochlear function. Both noN1inear and active functions of the Cochlea can be monitored by N1-N2 audiograms. 30623 T00401030623 ^x In electrical impedance tomography(EIT), we use boundary current and voltage measurements toprovide the information about the cross-sectional distribution of electrical impedance or resistivity. One of the major problems in EIT has been the inaccessibility of internal voltage or current data in finding the internal impedance values. We propose a new image reconstruction method using internal current density data measured by NMR. We obtained a two-dimensional current density distribution within a phantom by processing the real and imaginary MR images from a 4.77 NMR machine. We implemented a resistivity mage reconstruction algorithm using the finite element method and sensitivity matrix. We presented computer simulation results of the mage reconstruction algorithm and furture direction of the research. 30624 T00401030624 ^x A new method of digital image analysis technique for discrimination of cancer cell was presented in this paper. The object image was the Thyroid eland cells image that was diagnosed as normal and abnormal (two types of abnormal: follicular neoplastic cell, and papillary neoplastic cell), respectively. By using the proposed region segmentation algorithm, the cells were segmented into nucleus. The 16 feature parameters were used to calculate the features of each nucleus. A9 a consequence of using dominant feature parameters method proposed in this paper, discrimination rate of 91.11% was obtained for Thyroid Gland cells. 30625 T00401030625 ^x An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients. 30626 T00401030626 ^x Two-Dimensional modelling of the Cochlear biomechanics is presented in this paper. The Laplace partial differential equation which represents the fluid mechanics of the Cochlea has been transformed into two-dimensional electrical transmission line. The procedure of this transformation is explained in detail. The comparison between one and two dimensional models is also presented. This electrical modelling of the basilar membrane (BM) is clearly useful for the next approach to the further. Development of active elements which are essential in the producing of the sharp tuning of the BM. This paper shows that two-dimension model is qualitatively better than one-dimensional model both in amplitude and phase responses of the BM displacement. The present model is only for frequency response. However because the model is electrical, the two-dimensional transmission line model can be extended to time response without any difficult. 30627 T00401030627 ^x A method has been proposed for the fully automatic detection of left ventricular endocardial boundary in 2D short axis echocardiogram using geometric model. The procedure has the following three distinct stages. First, the initial center is estimated by the initial center estimation algorithm which is applied to decimated image. Second, the center estimation algorithm is applied to original image and then best-fit elliptic model estimation is processed. Third, best-fit boundary is detected by the cost function which is based on the best-fit elliptic model. The proposed method shows effective result without manual intervention by a human operator. 30628 T00401030628 ^x The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan's method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMf signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements. 30638 T00401030638 ^x A new neural network architecture for the recognition of patterns from images is proposed, which is partially based on the results of physiological studies. The proposed network is composed of multi-layers and the nerve cells in each layer are connected by spatial filters which approximate receptive fields in optic nerve fields. In the proposed method, patterns recognition for complicated images is carried out using global features as well as local features such as lines and end-points. A new generating method of matched filers representing global features is proposed in this network. 30659 T00401030659 ^x An implementation scheme of the magnetic nerve stimulator using a switching mode power supply is proposed. By using a switching mode power supply rather than a conventional linear power supply for charging high voltage capacitors, the weight and size of the magnetic nerve stimulator can be considerably reduced. Maximum output voltage of the developed magnetic nerve stimulator using the switching mode power supply is 3, 000 volts and switching time is about 100 msec. Experimental results or human nerve stimulations using the developed stimulator are presented. 30768 T00401030768 ^x In this paper, we describe the design methodology and specifications of the developed module-based bedside monitors for patient monitoring. The bedside monitor consists of a main unit and module cases with various parameter modules. The main unit includes a 12.1" TFT color LCD, a main CPU board, and peripherals such as a module controller, Ethernet LAN card, video card, rotate/push button controller, etc. The main unit can connect at maximum three module cases each of which can accommodate up to 7 parameter modules. They include the modules for electrocardiograph, respiration, invasive blood pressure, noninvasive blood pressure, temperature, and SpO2 with Plethysmograph.SpO2 with Plethysmograph.

  • PDF