• Title/Summary/Keyword: fuze

Search Result 46, Processing Time 0.025 seconds

A miniaturized turn-counting sensor using geomagnetism for small-caliber ammunition fuzes (지구자기장을 이용한 소구경 탄약 신관용 소형 회전수 계수 센서)

  • Yoon, Sang-Hee;Lee, Seok-Woo;Lee, Young-Ho;Oh, Jong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • This paper presents a miniaturized turn-counting sensor (TCS) where the geomagnetism and high-rpm rotation of ammunition are used to detect the turn number of ammunition for applications to small-caliber turn-counting fuzes. The TCS, composed of cores and a coil, has a robust structure with no moving part for increasing the shock survivability in the gunfire environments of ${\sim}30,000$ g's. The TCS is designed on the basis of the simulation results of an electromagnetic analysis tool, $Maxwell^{(R)}$3D. In experimental study, the static TCS test using a solenoid-coil apparatus and the dynamic TCS test (firing test) have been made. The presented TCS has shown that the induction voltage of $6.5{\;}mV_{P-P}$ is generated at the magnetic flux density of 0.05 mT and the rotational velocity of 30,000 rpm. From the measured signal, the TCS has shown the SNR of 44.0 dB, the nonlinearity of 0.59 % and the frequency-normalized sensitivity of $0.26{\pm}0.01{\;}V/T{\cdot}Hz$ in the temperature range of $-30{\sim}+43^{\circ}C$. Firing test has shown that the TCS can be used as a turn-counting sensor for small-caliber ammunition, verifying the shock survivability of TCS in high-g environments.

Research on the Decrease of Dud Ammunition Rate of 40mm Grenade(K200) Fuze through Quality Improvement (40mm 저속유탄(K200) 신관 품질개선을 통한 불발율 감소에 관한 연구)

  • Ju, Jin-Chun;Kim, Yong-Hwa;Ahn, Nam-Su;Kim, Sang-Min;Ha, Su-Ra
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.700-707
    • /
    • 2016
  • Recently, ammunition malfunctions of the 40mm grenade were reported during live fire training. When 72 40mm grenades were fired by the army, 11 duds were encountered. The dud ammunition rate was approximately 15%. Because ammunition is used a long time after its manufacture, it is necessary to ensure its performance after long-term storage. In this study, we attempted to decrease the dud ammunition rate of 40mm grenade (K200) fuzes through quality improvement. First, it was determined by the detonator performance test that abnormal explosions occurred due to the degradation of the detonator as a result of its aging characteristics. Second, we improved the fuze quality of the 40mm grenade. Third, we tested its shelf life to estimate its life expectancy. The shelf life of the 40mm grenade fuze obtained using the Arrhenius equation was 6.5 years for the existing grenade fuze and 45.5 years for the improved grenade fuze. This showed that the shelf life of the improved grenade was increased approximately 7 times. Therefore, the improved 40mm grenade fuze contributes to the quality improvement of the 40mm grenade by decreasing the dud ammunition rate during long term storage.

Aerodynamic Design of a Canard Controlled 2D Course Correction Fuze for Smart Munition (카나드 기반의 지능탄 조종 장치 공력설계)

  • Park, Ji-Hwan;Bae, Ju-Hyeon;Song, Min-Sup;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2015
  • Course correction munition is a smart projectile which improves its accuracy by the control mechanism equipped in the fuze section with canard. In this paper, various aerodynamic configurations of the fuze section were analysed by utilizing a semi-empirical method and a CFD method. A final canard configuration showing the least drag was then determined. During the CFD simulation, it was found that the k-${\omega}$ SST turbulence model combined with O-type grid base is suitable for the prediction of the base drag. Finally, the aerodynamic characteristics of the smart munition and the change of drag due to the canard installation were analysed.

Storage Lifetime Prediction of Zr-Ni Delay System in Fuze K510 for High Explosive Shell (충격신관 K510용 Zr-Ni계 지연관의 저장수명 예측)

  • Park, Byung-Chan;Chang, Il-Ho;Back, Seung-Jun;Son, Young-Kap;Jung, Eun-Jin;Hwang, Taek-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.719-726
    • /
    • 2009
  • A delay system in fuze for high explosive shell is an important safety device, but failure in the delay system usually causes failure of the shell. Root-cause analysis of failure in the delay system is required since failure in over 10-years stored delay system recently occurs. In this paper, failure in the delay system was reproduced experimentally to examine aged characteristics of the delay system, and the failed delay system shows the same characteristics as ones of failed delay systems in field. Based on the reproduced experiments, accelerated life testings and the data analysis of failure times of delay systems were performed to predict the storage lifetime.

A Direction Finding Proximity Fuze Sensor for Anti-air Missiles (방향 탐지용 전파형 대공 근접 신관센서)

  • Choi, Jae-Hyun;Lee, Seok-Woo;An, Ji-Yeon;Yeom, Kyung-Whan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.613-621
    • /
    • 2013
  • This paper presents the direction finding proximity fuze sensor using the clutter rejection method and the adaptive target detection algorithm for anti-air missiles. To remove effects by clutter and detect a target accurately, the clutter rejection method of Legendre sequence with BPSK(Bi phase Shift Keying) modulation has been proposed and the Doppler signal which has cross correlation characteristics is obtained from reflected target signals. Considering the change of the Doppler signal, the adaptive target detection algorithm has been developed and the direction finding algorithm has been fulfilled by comparing received powers from adjacent three receiving antennas. The encounter simulation test apparatus was made to collect and analyze reflected signal and test results showed that the -10 dBsm target was detected over 10 meters and the target with mesh clutter was detected and direction was distinguished definitely.

Test and Evaluation for Time Delay Function of Point Detonating Fuze by Underwater Sound Analysis (수중음향 분석을 통한 충격신관 지연기능 시험평가)

  • Na, Taeheum;Jang, Yohan;Jeong, Jihoon;Kim, Kwanju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.217-224
    • /
    • 2017
  • This study proposes an evaluation method for time delay function(TDF) of Point Detonation(PD) fuse using underwater explosion and water entry phenomena. Until now, nothing but the naked eyes of an observer or video images have been used to determine whether the TDF of PD fuze is operated or not. The observer has verified the performance of TDF by analysing the shape of the plume formed by underwater explosion. However, it is very difficult to evaluate the TDF of PD fuse by these conventional methods. In order to overcome this issue, we propose a method using underwater sound signal emitted from the underwater explosion of high explosive charge. The result shows that the measured sound signal is in accord with the physical phenomena of water entry of warhead as well as underwater explosion. Also, from the hypothesis test of bubble period, difference on underwater sound analysis between dud event and delay one is proved.

Analysis of How the Bonding Force between Two Assemblies Affects the Flight Stability of a High-speed Rotating Projectile (이종결합 고속회전 발사 탄의 비행 안정성에 결합력이 미치는 영향성 분석)

  • Lee, Sang-bong;Choi, Nak-sun;Lee, Jong-hyeon;Kim, Sang-min;Kang, Byung-duk
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.255-268
    • /
    • 2021
  • Purpose: We sought to understand why a high-speed rotating projectile featuring a fuze-and-body assembly sometimes exhibited airburst, and we intended to improve the flight stability by eliminating airburst. Methods: We performed characteristic factor analysis, structural mechanics modeling, and dynamic modeling and simulation; and we scheduled firing tests to discover the cause of airburst. We used a step-by-step procedure to analyze the reliability function for selecting the bonding force standard that prevents airburst. Results: The 00MM high-speed rotating projectile features a fuze bonded to a body assembly; the bonding sometimes can break on firing. The resulting contact force, vibration and roll damping during flight generated yaw. Flight became unstable; fuze operation triggered an airburst. Our reliability test improved the bonding force standard (the force was increased). When the bonding force was at least the minimum required, a firing test revealed that airburst/flight instability disappeared. Conclusion: Analysis and identification of the causes of flight instability and airburst render military training safer and enhance combat power. Ammunition must perform as designed. Our method can be used to set standards that improve the performances of similar types of ammunition.

A Study on Course Correction Performance Expectation & Algorithm Implementation of 1D CCM (1D CCM 탄도수정 성능예측 및 알고리즘 구현 연구)

  • Kim, Ki-Pyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.5-13
    • /
    • 2007
  • The trajectory of an current artillery munition is subject to a variety of different error sources resulting in more or less big deviation from the nominal predicted flight path. The 1D CCM(Course Correction Munition) has appeared to solve this problem and the mechanism of 1D CCM is a simple and low cost one using the influence of drag to range behavior of an artillery munition. In the paper 1D CCM concept has been simulated using wind tunnel experiment results of the specified Korean munition with CCF(Course Correction Fuze) and calculated the performance of its rang error reduction. From the simulated results it can be numerically explained that the possibility of adaptation of 1D CCM concept to Korean artillery munitions.

Improved Coded Mark Inversion for the Passive Radio Frequency Transmission System of the Electronic Time Fuze

  • Xiong, Dong;Zeng, Xiaoping;Zhao, Xiaogang
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.348-350
    • /
    • 2009
  • To fit the limited volume and power consumption of the passive radio frequency transmission system of the electronic time fuze, an improved coded mark inversion (CMI) is proposed in this letter. From the performance analysis, the energy transmission efficiency of this encoding method is at least 50% higher than that of CMI and NRZ. Finally, the experiment results show that by adopting this improved CMI, the change of DC voltage through magnetic coupling is lower than 0.2 V when the accuracy of data transmission is above 99.5%.

  • PDF

A Study on Configuration Design of the 2D Course Correction Munition (2D 탄도수정탄의 형상설계 연구)

  • Kim, Ki-Pyo;Chung, Myung-Jee;Hong, Jong-Tai
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.5-12
    • /
    • 2008
  • There are some ways to improve precision of conventional munitions by low-cost method. 2D Course Correction Munition(CCM) is one of those ways, which is a 155mm projectile integrated with 2D Guidance Fuze(GF) instead of conventional fuze. 2D GF can correct the projectile trajectory and minimize range and deflection errors from its aimpoint using canard control. In this paper 2D CCM system concept is introduced and its course correction capability is analyzed using PRODAS.