• 제목/요약/키워드: fusion networks

검색결과 225건 처리시간 0.021초

비 정규 분포 잡음 채널에서 높은 신호 대 잡음비를 갖는 무선 센서 네트워크의 정보 융합 (Fusion of Decisions in Wireless Sensor Networks under Non-Gaussian Noise Channels at Large SNR)

  • 박진태;김기성;김기선
    • 한국군사과학기술학회지
    • /
    • 제12권5호
    • /
    • pp.577-584
    • /
    • 2009
  • Fusion of decisions in wireless sensor networks having flexibility on energy efficiency is studied in this paper. Two representative distributions, the generalized Gaussian and $\alpha$-stable probability density functions, are used to model non-Gaussian noise channels. By incorporating noise channels into the parallel fusion model, the optimal fusion rules are represented and suboptimal fusion rules are derived by using a large signal-to-noise ratio(SNR) approximation. For both distributions, the obtained suboptimal fusion rules are same and have equivalent form to the Chair-Varshney fusion rule(CVR). Thus, the CVR does not depend on the behavior of noise distributions that belong to the generalized Gaussian and $\alpha$-stable probability density functions. The simulation results show the suboptimality of the CVR at large SNRs.

Dual-Stream Fusion and Graph Convolutional Network for Skeleton-Based Action Recognition

  • Hu, Zeyuan;Feng, Yiran;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제24권3호
    • /
    • pp.423-430
    • /
    • 2021
  • Aiming Graph convolutional networks (GCNs) have achieved outstanding performances on skeleton-based action recognition. However, several problems remain in existing GCN-based methods, and the problem of low recognition rate caused by single input data information has not been effectively solved. In this article, we propose a Dual-stream fusion method that combines video data and skeleton data. The two networks respectively identify skeleton data and video data and fuse the probabilities of the two outputs to achieve the effect of information fusion. Experiments on two large dataset, Kinetics and NTU-RGBC+D Human Action Dataset, illustrate that our proposed method achieves state-of-the-art. Compared with the traditional method, the recognition accuracy is improved better.

Silence Reporting for Cooperative Sensing in Cognitive Radio Networks

  • Kim, Do-Yun;Choi, Young-June;Choi, Jeung Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권3호
    • /
    • pp.59-64
    • /
    • 2018
  • A cooperative spectrum sensing has been proposed to improve the sensing performance in cognitive radio (CR) network. However, cooperative sensing causes additional overhead for reporting the result of local sensing to the fusion center. In this paper, we propose a technique to reduce the overhead of data transmission of cooperative sensing for applying the quantum data fusion technique in cognitive radio networks by omitting the lowest quantized in the local sensed results. If a CR node senses the lowest quantized level, it will not send its local sensing data in the corresponding sensing period. The fusion center can implcitly know that a spectific CR node sensed lowest level if there is no report from that CR node. The goal of proposed sensing policy is to reduce the overhead of quantized data fusion scheme for cooperative sensing. Also, our scheme can be adapted to all quantized data fusion schemes because it only deal with the form of the quantized data report. The experimental results show that the proposed scheme improves performance in terms of reporting overhead.

Convolutional Neural Network Based Multi-feature Fusion for Non-rigid 3D Model Retrieval

  • Zeng, Hui;Liu, Yanrong;Li, Siqi;Che, JianYong;Wang, Xiuqing
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.176-190
    • /
    • 2018
  • This paper presents a novel convolutional neural network based multi-feature fusion learning method for non-rigid 3D model retrieval, which can investigate the useful discriminative information of the heat kernel signature (HKS) descriptor and the wave kernel signature (WKS) descriptor. At first, we compute the 2D shape distributions of the two kinds of descriptors to represent the 3D model and use them as the input to the networks. Then we construct two convolutional neural networks for the HKS distribution and the WKS distribution separately, and use the multi-feature fusion layer to connect them. The fusion layer not only can exploit more discriminative characteristics of the two descriptors, but also can complement the correlated information between the two kinds of descriptors. Furthermore, to further improve the performance of the description ability, the cross-connected layer is built to combine the low-level features with high-level features. Extensive experiments have validated the effectiveness of the designed multi-feature fusion learning method.

Fuzzy systems, neural networks and genetic algorithms

  • Lee, Hyung-Kwang;Lee, Jee-Hyong
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.327-332
    • /
    • 1999
  • Fuzzy systems, neural networks and genetic algorithms have different origins and thus have differently developed their own unique characteristics. These characteristics can be used as a good complement to the others. Therefore, many researches have been devoted to not only these techniques but also fusion of them. This paper briefly summarizes these three techniques and surveys the researches on fusion of them.

  • PDF

A Cooperative Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Networks

  • Thuc, Kieu-Xuan;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권3호
    • /
    • pp.289-304
    • /
    • 2010
  • This paper proposes a novel scheme for cooperative spectrum sensing on distributed cognitive radio networks. A fuzzy logic rule - based inference system is proposed to estimate the presence possibility of the licensed user's signal based on the observed energy at each cognitive radio terminal. The estimated results are aggregated to make the final sensing decision at the fusion center. Simulation results show that significant improvement of the spectrum sensing accuracy is achieved by our schemes.

A Cyber-Physical Information System for Smart Buildings with Collaborative Information Fusion

  • Liu, Qing;Li, Lanlan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1516-1539
    • /
    • 2022
  • This article shows a set of physical information fusion IoT systems that we designed for smart buildings. Its essence is a computer system that combines physical quantities in buildings with quantitative analysis and control. In the part of the Internet of Things, its mechanism is controlled by a monitoring system based on sensor networks and computer-based algorithms. Based on the design idea of the agent, we have realized human-machine interaction (HMI) and machine-machine interaction (MMI). Among them, HMI is realized through human-machine interaction, while MMI is realized through embedded computing, sensors, controllers, and execution. Device and wireless communication network. This article mainly focuses on the function of wireless sensor networks and MMI in environmental monitoring. This function plays a fundamental role in building security, environmental control, HVAC, and other smart building control systems. The article not only discusses various network applications and their implementation based on agent design but also demonstrates our collaborative information fusion strategy. This strategy can provide a stable incentive method for the system through collaborative information fusion when the sensor system is unstable in the physical measurements, thereby preventing system jitter and unstable response caused by uncertain disturbances and environmental factors. This article also gives the results of the system test. The results show that through the CPS interaction of HMI and MMI, the intelligent building IoT system can achieve comprehensive monitoring, thereby providing support and expansion for advanced automation management.

An efficient dual layer data aggregation scheme in clustered wireless sensor networks

  • Fenting Yang;Zhen Xu;Lei Yang
    • ETRI Journal
    • /
    • 제46권4호
    • /
    • pp.604-618
    • /
    • 2024
  • In wireless sensor network (WSN) monitoring systems, redundant data from sluggish environmental changes and overlapping sensing ranges can increase the volume of data sent by nodes, degrade the efficiency of information collection, and lead to the death of sensor nodes. To reduce the energy consumption of sensor nodes and prolong the life of WSNs, this study proposes a dual layer intracluster data fusion scheme based on ring buffer. To reduce redundant data and temporary anomalous data while guaranteeing the temporal coherence of data, the source nodes employ a binarized similarity function and sliding quartile detection based on the ring buffer. Based on the improved support degree function of weighted Pearson distance, the cluster head node performs a weighted fusion on the data received from the source nodes. Experimental results reveal that the scheme proposed in this study has clear advantages in three aspects: the number of remaining nodes, residual energy, and the number of packets transmitted. The data fusion of the proposed scheme is confined to the data fusion of the same attribute environment parameters.

Generalized Gaussian Noise에서의 무선센서 네트워크의 Decision Fusion Rule의 성능 분석에 관한 연구 (Performance Evaluation of Decision Fusion Rules of Wireless Sensor Networks in Generalized Gaussian Noise)

  • 박진태;구인수;김기선
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.97-98
    • /
    • 2006
  • Fusion of decisions from multiple distributed sensor nodes is studied in this work. Based on the canonical parallel fusion model, we derive the optimal likelihood ratio based fusion rule with the assumptions of the generalized Gaussian noise model and the arbitrary fading channel. This optimal fusion rule, however, requires the complete knowledge of the channels and the detection performance of local sensor nodes. To mitigate these requirements and to provide near optimum performance, we derive suboptimum fusion rules by using high and low signal-to-noise ratio (SNR) approximations to the optimal fusion rule. Performance evaluation is conducted through simulations.

  • PDF

오류 역전파 신경망 기반의 센서융합을 이용한 이동로봇의 효율적인 지도 작성 (An Effective Mapping for a Mobile Robot using Error Backpropagation based Sensor Fusion)

  • 김경동;곡효천;최경식;이석규
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1040-1047
    • /
    • 2011
  • This paper proposes a novel method based on error back propagation neural networks to fuse laser sensor data and ultrasonic sensor data for enhancing the accuracy of mapping. For navigation of single robot, the robot has to know its initial position and accurate environment information around it. However, due to the inherent properties of sensors, each sensor has its own advantages and drawbacks. In our system, the robot equipped with seven ultrasonic sensors and a laser sensor navigates to map two different corridor environments. The experimental results show the effectiveness of the heterogeneous sensor fusion using an error backpropagation algorithm for mapping.