• 제목/요약/키워드: fusion material

검색결과 556건 처리시간 0.029초

동적 에너지 시뮬레이션을 이용한 PCM보드의 설계변수 분석에 관한 연구 (Analysis of PCM Wallboards Design Parameters using Dynamic Energy Simulation)

  • 이진욱;안상민;김태연;이승복
    • KIEAE Journal
    • /
    • 제12권4호
    • /
    • pp.97-104
    • /
    • 2012
  • A phase-change material is a substance with a high heat of fusion which, melting and freezing at a certain temperature, is capable of storing and releasing large amounts of energy. Heat is absorbed or released when the material changes from solid to liquid. Therefore, PCMs are classified as latent heat storage (LHS) units. The purpose of this study is to analyze PCM wallboard design parameters using dynamic energy simulation. Among the factors of PCM, melting temperature, latent heat, phase change range, thermal conductivity are very important element to maximize thermal energy storage. In order to analyze these factors, EnergyPlus which is building energy simulation provided by department of energy from the U.S is used. heat balance algorithm of energy simulation is conduction finite difference and enthalpy-temperature function is used for analyzing latent heat of PCM. The results show that in the case of melting temperature, the thermal energy storage could be improved when the melting temperature is equal to indoor surface temperature. It seems that when the phase change range is wide, PCM can store heat at a wide temperature, but the performance of heat storage is languished.

Selection of polymer material in the design optimization of a new dynamic spinal implant

  • Monede-Hocquard, Lucie;Mesnard, Michel;Ramos, Antonio;Gille, Olivier
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권4호
    • /
    • pp.237-248
    • /
    • 2015
  • "Dynamic stabilization" systems have been developed in recent years to treat degenerative disorders of the spinal column. In contrast to arthrodesis (fusion), the aim here is to conserve intervertebral mobility to maximize comfort. When developing innovative concepts, many mechanical tests need to be carried out in order to validate the different technological solutions. The present study focuses on the B Dyn$^{(R)}$ "dynamic stabilization" device (S14$^{(R)}$ Implants, Pessac, France), the aim being to optimize the choice of polymer material used for one of the implant's components. The device allows mobility but also limit the range of movement. The stiffness of the ring remains a key design factor, which has to be optimized. Phase one consisted of static tests on the implant, as a result of which a polyurethane (PU) was selected, material no.2 of the five elastomers tested. In phase two, dynamic tests were carried out. The fatigue resistance of the B Dyn$^{(R)}$ system was tested over five million cycles with the properties of the polymer elements being measured using dynamic mechanical analysis (DMA) after every million cycles. This analysis demonstrated changes in stiffness and in the damping factor which guided the choice of elastomer for the B Dyn$^{(R)}$ implant.

$KNO_3$$HNO_3$ 전해액이 Cu에 미치는 영향 (Effect of copper surface to $HNO_3$ and $KNO_3$ electrolyte)

  • 서용진;한상준;박성우;이영균;이성일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.486-486
    • /
    • 2009
  • In this paper, the current-voltage (I-V) curves, such as linear sweep voltammetry (LSV) and cyclic voltammetry (CV), were employed to evaluate the effect of electrolyte concentration on the electrochemical reaction trend. From the I-V curve, the electrochemical states of active, passive, transient and trans-passive could be characterized. And then, we investigated that how this chemical affect the process of voltage-induced material removal in electrochemical mechanical polishing (ECMP) of Copper. The scanning electron microscopy (SEM) and energy dispersive spectroscopy EDS) analyses were used to observe the surface profile. Finally, we monitored the oxidation and reduction process of the Cu surface by the repetition of anodic and cathodic potential from cyclic voltammetry (CV) method in acid- and alkali-based electrolyte. From these analyses, it was important to understand the electrochemical mechanisms of the ECMP technology.

  • PDF

세라믹에 대한 수중 레이저 드릴링의 열영향 모델링 및 해석 (Modeling and Analysis of Thermal Effects of Underwater Laser Drilling for Ceramics)

  • 김택구;김주한
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1265-1271
    • /
    • 2013
  • In this work, modeling and analysis of thermal effects laser drilling under water for ceramics were presented. Laser is a unique tool for machining ceramics due to the characteristic of non-contact material removal. However, ablation by a laser often induces a thermal effect on the material and an increased heat-affected-zone or deposition of debris can be observed on the machined parts. The underwater surrounding improved a heat transfer rate to cooling down the machined part and could prevent any deposition of debris near the machined surfaces and edges. The heat modeling was applied to obtain the temperature distributions as well as temperature gradients between the material and surroundings. The cooling effect of the underwater laser drilling was improved and a more stable temperature distribution was calculated. The actual laser drilling results of ceramic laser drilling were presented to verify the effects of underwater laser drilling.

쿠마겐코 건축공간에 나타나는 물성표현에 관한 연구 - 자연재료를 중심으로 - (A Study on the Expression of Materiality in Kuma Kengo's Architecture Space - Focus on the nature material -)

  • 유종호;이정욱
    • 한국실내디자인학회논문집
    • /
    • 제22권1호
    • /
    • pp.28-37
    • /
    • 2013
  • Architecture of the present time has a general tendency that focuses only in its permanence between the structure and the ground. Architecture has the temporariness. In other words, it is a losing creation. Structure of natural building materials starts its life on the ground and also ends its life on there. Natural building materials leave no building wastes on their ground. Concerns about how to let materials contain not only its physical property but also their regional relation and timely temporariness can let us express materiality of natural building materials in modern construction spaces. And also, it will be the way of recovering the value of architecture and the healing human's sensibility. Kuma Kengo made an attempt that makes the best use of materiality in his work by using them in balance and draw new materiality by a fusion of them. In here, suggestion about the ways of using weak natural materials in modern construction spaces is the main object of this paper. And we can make a progress by analyzing Kuma's expression way of materiality in his work.

Multi-step Metals Additive Manufacturing Technologies

  • Oh, Ji-Won;Park, Jinsu;Choi, Hanshin
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.256-267
    • /
    • 2020
  • Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.

Design optimization of the outlet holes for bone crystal growing with bioactive materials in dental implants: Part II. number and shapes

  • Lee, Kangsoo;Kim, Geug Tae;Lee, Yong Keun
    • 한국결정성장학회지
    • /
    • 제23권2호
    • /
    • pp.76-80
    • /
    • 2013
  • For further improvement of osseo-integration of bone crystal with a dental implant, a design optimization study is carried out for various holes inside its body to deliver bioactive materials and the effect of bioactive material injection on the bone crystal growing. When bioactive material is absorbed, the bone crystal can grow into holes, which would increase the strength of implant bonding as well as a surface integration. The stress concentrations near the uppermost outlet holes were reduced with increasing the number of outlet holes. A design improvement in the uppermost outlet was shown to be effective in reducing the stress concentration. For design parameters under consideration in this study, total area of outlet of 6.38 $mm^2$ and maximum stress of 1.114 MPa, which corresponds to type 6-C. It is due to the minimization of maximum stress and total area of outlet. The design of the outlet facing down was more effective in reducing the maximum stress value compared with a horizontal symmetry.

신개념 백라이트유닛 모델링 (Modeling for New Type Backlight Units)

  • 이광훈;지승현;김수현;윤영수;김수호
    • 한국광학회지
    • /
    • 제21권2호
    • /
    • pp.41-45
    • /
    • 2010
  • 백라이트유닛을 더 얇고 밝게 제안하기 위하여 우리는 새로운 타입의 백라이트유닛을 시뮬레이션하였다. 도광판 상면에 미세 볼록렌즈어레이를 형성시킨다. 또한, LGP와의 매칭을 위하여 우리는 기능성 광학 시트를 시뮬레이션하였다. 일반적으로 전통적인 백라이트유닛들은 하나의 LGP와 네 개의 광학시트를 사용해왔으나 우리는 하나의 광학시트를 사용한 백라이트유닛을 시뮬레이션하였다. 설계 결과 우리의 백라이트유닛은 동일한 발광성을 달성하면서 시야각은 30% 더 좋아진 것을 밝혀내었다.

The bubble problem of the plasma facing material: A finite element study

  • Kang, Xiaoyan;Cheng, Xiyue;Deng, Shuiquan
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2290-2298
    • /
    • 2020
  • The damage of first wall material in fusion reactor due to the bubbles caused by plasma has been studied by introducing a relation between the von Mises equivalent stress and the temperature field. The locations and shapes of the bubbles and the synergetic effect between the different bubbles under steady operational conditions have been studied using the finite elements method. Under transient heat loads, plastic deformations have been found to occur, and are significantly enhanced by the presence of the bubbles. The calculated concentration locations of von Mises equivalent stress are well consistent with the observed crack positions of the tungsten surface in many test experiments. Our simulations show that the damage of the bubbles is not severe enough to lead to catastrophic failure of the tungsten armor; however, it can cause local and gradual detachment of tungsten surface, which provides a reasonable explanation for the observed pits and rough or hairy surface morphology etc. Considering the transient heat loads, the lower bound of the security thickness of the tungsten tile is estimated to be greater than 2 mm.

다이캐스팅용 알루미늄의 성분 변화에 따른 LED 방열 특성 연구 (A Study of Characteristics of the LED Heat Dissipation According to the Changes in Composition of Die-casting Aluminum)

  • 여정규;허인성;유영문;이세일;최희락
    • 한국전기전자재료학회논문지
    • /
    • 제27권8호
    • /
    • pp.535-540
    • /
    • 2014
  • Because of the development of LED technology, products due to high output and compact, the material with high thermal conductivity has been developed. Now that heat radiating part of the LED lamp is currently used for die casting of aluminum. The development of aluminum with excellent thermal conductivity is required. In this study, we measured the thermal properties and compared them while we produced the alloy by changing the component of die casting aluminum. From this study, the thermal conductivity and thermal resistance of the developed alloy were superior to die casting aluminum.