• Title/Summary/Keyword: furnace cooling

Search Result 165, Processing Time 0.027 seconds

Crystal Growth and Solid Solution of Hexagonal Ferrites (육방정 페라이트의 고용성 및 단결정 육성 연구)

  • 강진기;박병규;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.78-86
    • /
    • 1986
  • single crystals of various hexagonal ferrites were grown by a flux technique. For the growing experiment platinum crucibles of size 40 cc and a horizontal siliconit tube furnace were used. Charges consisted of the flux of BaO(SrO)/$B_2O_3$ and the composition of crystals in the system of BaO $(SrO)-Fe_2O_3-ZnO$. The BaO(SrO)/$B_2O_3$ molar ratio of the flux were varied from 1 to 3. Crystals up to 12.5mm in diameter were grown by slow cooling of melts from a maximum temperature of 1, 30$0^{\circ}C$or 1, 350$0^{\circ}C$ to 95$0^{\circ}C$ or 1, 00$0^{\circ}C$ The grown crystals exhibited a tabular hexagonal habits with very well developed ba-sal planes and narrow pyramidal faces of {1011} {1012} and {0001}. For the identification of the grown crystals X-ray diffraction studies were carried out. The effects of va-riations in flux ratio flux percentage and cooling rate on the quality of the grown crystals were studied. Cry-stal habits hillocks etch steps and growth spirals were observed by optical microscope. Magnetic properties of single crystals were measured.

  • PDF

Thixo Extrusion and Reheating Characteristics of Semi Solid A356 Alloy (반응고 A356 합금의 재가열 특성 및 반용융 압출)

  • Kim, Dae-Hwan;Jung, Hyun-Ju;Shim, Sung-Yong;Lim, Su-Gun;Lee, Sang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.34 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • This work presents the results of a thixo-extrusion process applied to aluminum alloy and and reheating characteristics of semi-solid A356 Alloy using have been discussed. The reheating experiment was performed using an electric resistance furnace and multi-stage heating for uniform reheating. The thixo-extrusion was performed at the optimal reheating conditions of the semi-solid A356 alloy, the the extrusion conditions were an extrusion ratio of 33 and ram speed of 6 mm/sec. The results showed that the thixo-extrusion of semi-solid A356 alloy fabricated by the cooling slope reduced the extrusion pressure by 180% in comparison with hot extrusion, and that a sound extrusion could be obtained in spite of the same extrusion ratio and strain rate.

Waste Heat Utilization of Melted slags at Pyrolysis, Gasification and Melting System (열분해 가스화 용융시스템에서 용융슬래그의 폐열 활용)

  • Lee, Ho-Seok;Sung, Sang-Chul;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1237-1242
    • /
    • 2008
  • A study on waste heat utilization of melted slags at pyorlysis, gasification and melting system was performed. Researchers studied heat balance of substances that flow and flow out to the system which is consisted of melting furnace, combustion chamber, and waste heat boiler, then they calculated melting slags' quantity of heat by the first law of thermodynamics. If they use water cursh pit outflow which is gotten by quenching of melting slag as a energy for heating and cooling system, steam of waste heat boiler would be delivered to a steam turbine, making energy, then they will get 67,671,000 won of profit a year. It will take 3 years to repossess the cost that they invested for building it. And, if we predict durability of trash burner is 20 years, we will get approximately 1,150,407,000 won of profits in 17 years without the period when we repossess the building costs.

  • PDF

High Performance Gear Obtained by Die Warm Compaction and Rapid Cooling Process

  • Calero, J.A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.199-200
    • /
    • 2006
  • PM recent developments focus on increasing this technology's competitiveness when compared to wrought materials. Warm compaction allows the replacement of a double press double sinter process with a single warm press and sintering step, thus allowing cost and time savings. Moreover there are added benefits to consider such as reducing work in process and lessening part's logistics cost. This paper presents a successful industrial trial to replace a double press-double sinter process with a warm die compaction and sintering process. The part chosen was a high performance gear containing 0,9% wt. carbon. Sintering was conducted in a belt furnace at $1120^{\circ}C$ in a nitrogen rich atmosphere with rapid cooling process in order to obtain a quasi fully martensitic structure with a minimum of 700HV0,1 and 450HV10 after annealing. The balance between properties and cost is favoured by the use of a singular lubricant developed in a Eureka frame project together with POMETON S.A. and die warm compaction. Warm compaction is only needed to be effective on the gear teeth, in order to achieve the required properties. Therefore only the die is actually heated. This simplified system avoids flow rate problems typically involved when using more elaborate warm compaction equipments.

  • PDF

Effect of Cooling Rate and Annealing Temperature on Corrosion and Microstructure of Zircaloy-4 and Zr-2.5Nb Alloy (Zircaloy-4와 Zr-2.5Nb 합금의 부식과 미세조직에 미치는 냉각속도와 소둔온도의 영향)

  • Jeong, Yong-Hwan;Jeong, Yeon-Ho;Kim, Hyeon-Gil;Wee, Myung-Yong
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1031-1037
    • /
    • 1998
  • To investigate the effect of cooling rate and annealing temperature on the corrosion of Zircaloy-4 and Zr-2. 5Nb alloys, autoclave corrosion tests were performed at $500^{\circ}C$ for the specimens prepared by various heat treatments. The specimens were heat-treated at $1050^{\circ}C$ for 30 minutes and cooled by ice-brine quenching, water quenching, oil quenching, air cooling, and furnace cooling. To investigate the effect of annealing temperature, the specimens were annealed at $\alpha$, ($\alpha$+$\beta$)-, and $\beta$-temperatures. It was observed from the $500^{\circ}C$ corrosion test that nodular corrosion occurred on the Zircaloy-4 alloy but did not occur on the Zr-2.5Nb alloy. The corrosion resistance of Zircaloy-4 increased with increasing the cooling rate. On the other hand, the corrosion resistance of Zr-2.5Nb decreased with increasing the cooling rate and the annealing temperature. It is suggested that corrosion resistance of Zircaloy-4 would be controlled by the distribution of Fe and Cr element in the matrix and precipitates, while that of Zr-2.5Nb alloy the niobium concentration and $\beta_{-Nb}$ phase.

  • PDF

A Study on the Characteristics of Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube with the Heating-up and Heat-treatment (열처리 및 가열방식에 따른 Zr-2.5Nb 압력관의 수소지연균열 특성에 관한 연구)

  • Na, Eun-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • The objective of this study was to obtain a better understanding of the delayed hydride cracking (DHC) of Zr-2.5Nb alloy. The DHC model has some defects: first, it cannot explain why the DHC velocity (DHCV) becomes constant regardless of an applied stress intensity factor, even though the stress gradient is affected by the applied stress intensity factor at the notch tip. Second, it cannot explain why the DHCV has a strong dependence on the method of approaching the test temperature by a cool-down or a heating-up, even under the same stress gradient, and third, it cannot predict any hydride size effect on the DHC velocity. The DHC tests were conducted on Zr-2.5Nb compact tension specimens with the test temperatures reached by a heating-up method and a cool-down method. Crack velocities were measured in hydrided specimens, which were cooled from solution-treatment temperatures at different rates by being furnace-cooled, water-quenched, and liquid nitrogen-quenched. The resulting hydride size, morphology, and distributions were examined by optical metallography. It was found that fast cooling rates, which produce very finely dispersed hydrides, result in higher crack growth rates. This different DHC behavior of the Zr-2.5Nb tube with the cooling rate after a homogenization treatment is due to the precipitation of the $\gamma$-hydrides only in the water-quenched Zr-2.5Nb tube. This experiment will provide supporting evidence that the terminal solid solubility of a dissolution (TSSD) of $\gamma$-hydrides is higher than that of $\delta$-hydrides.

Estimation of Directional Solidification Ingot with Heating Position (발열 위치에 따른 잉곳의 방향성 응고 평가)

  • Jun, Ho-Ik;Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1915-1920
    • /
    • 2013
  • This paper is the study for the directional solidification of the ingot through the thermal analysis simulation and structural change of casting furnace. With the results of thermal analysis simulation, the silicon as a whole has reached the melting temperature as the retention time 80 min. The best cooling conditions showed at the upper cooling temperature $1,400^{\circ}C$ and cooling time 60min. The fabricated wafers showed the superior etching result at the grain boundary than that of existing commercial wafers. The FTIR measurements of oxygen and carbon impurities were not in the critical value for solar conversion efficiency. The NAA analysis of metal impurities were also detected the total number of 18 different metals, but the concentration distribution showed no significant positional deviations in the same position from the top to the bottom.

Effect of Nb-content and Cooling Rate during ${\beta}$-quenching on Phase Transformation of Zr Alloys (${\beta}$-열처리시 Nb 첨가량과 냉각속도가 Zr 합금의 상변태에 미치는 영향)

  • Choi, B.K.;Kim, H.G.;Jeong, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.271-277
    • /
    • 2004
  • Zr-xNb alloys (x = 0.2, 0.8, 1.5 wt.%) were prepared to study the characteristics of the phase transformation in Zr-Nb system. The samples were heat treated at ${\beta}$-temperature ($1020^{\circ}C$) for 20 min and then cooled with different cooling rate. The microstructures of the specimens having the same compositions were changed with cooling rate and Nb content. The Widmanst$\ddot{a}$tten structure was observed on the furnace-cooled sample. The relationship between ${\alpha}$-Widmanst$\ddot{a}$tten and ${\beta}$-phase was the {0001}${\alpha}$//{110}${\beta}$, <11$\bar{2}$0>//<111>. The ${\beta}$-phase in Widmanst$\ddot{a}$tten structure of Zr-Nb alloys containing Nb more than solubility limit was identified as ${\beta}_{Zr}$ phase which was a stable phase at high temperature. In the water quenched samples, two kinds of martensite structures were observed depending on the Nb-concentration. The lath martensite was formed in Zr-0.2, 0.8 wt.% Nb alloys and the plate martensite having twins was formed in Zr-1.5 wt.% Nb alloy.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

Study on the Spheroidization of Cementite by Controlled-Rolling and Martensitic Nucleation and its Growth during Cooling in Ultra High Carbon Steel (초고탄소강의 제어압연에 의한 세멘타이트의 구상화와 냉각중 마르텐사이트의 핵발생과 성장의 현상론적 고찰)

  • Choi, C.S.;Yoon, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.98-106
    • /
    • 1993
  • Ultra high carbon steel (Fe-1.4%C) was prepared by means of a high frequency induction furnace. The preferred nucleation site of martensite was observed. The changes of hardness and impact thoughness due to tempering temperatures, and the spheroidization of cementite by controlled -rolling were also studied for the steel. The preferred nucleation site of martensite in the ultra high carbon steel is prior austenite grain boundary. The hardness of the steel is slightly increased up to about $300^{\circ}C$, and then decreased with further tempering temperature. However, the impact energy keeps a almost constant value, independent of the tempering temperature. The spheroidization of cementite is accelerated as the reduction in thickness per rolling pass is increased and the number of the rolling passes becomes greater.

  • PDF