• Title/Summary/Keyword: furnace

검색결과 3,798건 처리시간 0.026초

Experimental Study on the Time-dependent Property of Chloride Diffusivity of Concrete (콘크리트의 염소이온 확산계수의 시간의존성에 대한 실험적 고찰)

  • Choi, Doo Sun;Choi, Jae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제29권4A호
    • /
    • pp.365-371
    • /
    • 2009
  • It is time-consuming to estimate chloride diffusivity of concrete by concentration difference test. For the reason chloride diffusivity of concrete is mainly tested by electrically accelerated method, which is accelerating the movement of chloride ion by potential difference. In this study, portland cement concrete and concrete containing with ground granulated blast-furnace slag (40 and 60% of cement by weight) with water-cementitious material ratio 40, 45, 50 and 60% were manufactured. To compare with chloride diffusivity calculated from the electrically accelerated test and immersed test in artifical seawater, chloride diffusivity tests were conducted. From the results of regression analysis, regression equation between accelerated chloride diffusivity and immersed chloride diffusivity was linear function. And the determinant coefficient was 0.96 for linear equation.

Evaluation of the Effect of Bank Protection Concrete Blocks on Water and Soil Environmental Impact (하천 호안 콘크리트 블록이 수질 및 토양환경에 미치는 영향평가)

  • Yoo Jae Hwan;Park Youn Shik;Shin Hyun Oh;Lee Goen Hee;Lee Bo Hyun;Cha Sang-Sun;Park Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제65권1호
    • /
    • pp.51-59
    • /
    • 2023
  • The study is to evaluate the effect of bank protection concrete block products to streams and soils. The effect on three types of bank protection concrete blocks was evaluated.. The first type was manufactured using fly ash, and the second and third type products used fine blast furnace slag powder. The laboratory and field Experiments test results showed the pHs of 9 or less. Also, any heavy metals were not detected in the heavy metal leaching tests. Although some iron (Fe) was partially detected, it still met the water quality standards. In addition, heavy metal was detected from all blocks by the US drinking water evaluation standards method. An on-site water quality and soil contamination tests were performed at the places that the blocks were implemented in practice. The test results showed that the application of the bank protection concrete block product did not lead to the water and soil quality degradation. Therefore, it was found that the hardened bank protection concrete block product did not elute harmful substances such as heavy metals that affect water and soil quality degradation.

Study on the Shear Characteristics by using the Hot Mechanical Piercing during the Hot Stamping Process (열간 기계적 피어싱을 이용한 핫스탬핑 전단특성 연구)

  • K. J. Park;J. M. Park;J. Y. Kong;J. Y. Kim;S. C. Yoon;J. S. Hyun;Y. D. Jung
    • Transactions of Materials Processing
    • /
    • 제32권2호
    • /
    • pp.81-86
    • /
    • 2023
  • The hot stamping process is widely used for high strength of vehicle parts, with heating 900 ℃ or higher in a furnace and in-die quenching to achieve strength above 1.5 GPa of the quenchable boron alloyed steel 22MnB5. First of all, the hot stamping process consisted of heating, forming, quenching and trimming. In the trimming process case, the laser method has been conventionally adopted. For laser trimming process, it has the problems pertaining to low productivity and high cost while the hot stamping process, accordingly the trimming process need to investigate the research for alternative method. In order to overcome these issues, many research groups have studied the mechanical trim solution on the hot stamped parts at high temperature. In this study, the mechanical piercing was performed during the hot stamping process at the high temperature for overcome the disadvantages of laser cutting. Also, the process parameters such as piercing time after die closing, clearances of between die and punch were controlled for obtaining the reasonable shear characteristics.

Distribution characteristics of dioxin concentration in pyrolysis-gasification-melting process facilities (생활폐기물 열분해-가스화-용융공정시설에서 다이옥신의 분포특성)

  • Son, Jihwan;Kim, Kiheon;Kang, Youngyeol;Park, Sunku
    • Analytical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.10-16
    • /
    • 2007
  • This research was designed to investigate the formations of hazardous air pollutants in the MSWs pyrolysis-gasification-melting process. In this survey, PCDDs/PCDFs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofuran) were investigated in the two facilities (A and B facilities). In A facility, the PCDDs/DFs concentrations were 0.88, 2.29, 0.16 ng I-TEQ/$m^3$ respectively on the secondary incinerator, boiler and stack. In B facility, the PCDDs/PCDFs concentrations were 0.22, 0.05 ng I-TEQ/$m^3$ respectively on the pyrolysis-gasification-melting furnace and stack. The concentrations of PCDDs/PCDFs increased due to resynthesis during cooling process in the both facilities. High concentrations of PCDDs/PCDFs isomers were founded as 2, 3, 4, 7, 8-PeCDF, 2, 3, 4, 6, 7, 8-HxCDF and 1, 2, 3, 6, 7, 8-HxCDF orderly in A facility, and 2, 3, 4, 7, 8-PeCDF, 1, 2, 3, 7, 8-PeCDD and 2, 3, 4, 6, 7, 8-HxCDF orderly in B facility.

A Study on the Flowability Properties of the High Flowing Self-Compacting Concrete for Members of Bridge Precast (프리캐스트 교량부재용 초유동 자기충전 콘크리트의 유동 특성에 관한 연구)

  • Choi, Yun Wang;Kim, Yong Jic;Kang, Hyun Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제28권1A호
    • /
    • pp.155-163
    • /
    • 2008
  • On the construction site with trends of large scale, high rise and specialization, testing construction of high performance concrete, superior to conventional concrete, is continued to increase. For bridge construction, application of full staging method is gradually decreasing due to noise, dust, and prolonged construction period. Recently, precast construction, which is optimized to urban environment and shorter work period, gains popularity significantly. In bridge structure, overcrowding arrangement of bar is used to ensure its safety. For the manufacturing of overcrowding arrangement of bar, High flowing self-compacting concrete, which is superior to conventional concrete in flowability and compacting property, should be implemented. In this study, the application of blast-furnace slag and fly ash to binary and ternary blended system on the High flowing self-compacting concrete for bridge structure with overcrowding arrangement of bar is evaluated by flowability in accordance with the first class regulations of Japan Society of Civil Engineering (JSCE).

Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel (터널 내화용 고강도 습식 스프레이 폴리머 모르타르의 화재 발생시 내부온도분포)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제26권4C호
    • /
    • pp.283-290
    • /
    • 2006
  • Concrete has advantages in fire situations as it is non-combustible and has low thermal conductivity. However, concrete that is not designed against fire can experience significant explosive spalling from the build-up of pore pressures and internal tensile stresses when heated. In this study, the performance of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system was evaluated by experimentally and numerically. The fire test was performed in fire resistance(electric) furnace according to RABT(Richtlinien fur die Ausstatung und den Betrieb von $Stra{\beta}entunneln$) time heating temperature curve, so as to evaluate the temperature distribution with cover thickness of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel system. Based on experimental results and numerical analysis, the proper cover thickness of wet-mixed high strength sprayed polymer mortar determined the more than 4cm.

Performance Evaluation of Concrete Bench Flume Using Industrial by Products (산업부산물을 이용한 콘크리트 벤치플룸의 성능평가)

  • Jae-Ho Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제11권3호
    • /
    • pp.276-281
    • /
    • 2023
  • Water pipes manufactured using existing Portland cement suffer from the problem of rapid deterioration and reduced durability due to the hydration product of cement being vulnerable to acids. Therefore, in this study, water pipes were manufactured using slag and fly ash, which are industrial by-products from various industries, and their characteristics were analyzed. As a result of the experiment, slump in unhardened concrete tended to increase due to the ball bearing action of fly ash, and the amount of air was reduced due to unburned coal, indicating that measures for frost resistance were needed. In addition, the initial strength of the compressive strength was increased through steam curing, and the results were equal to or better than OPC when mixing more than 50 % of slag. The acid resistance results showed that the mass reduction rate was less than 5 %, showing excellent durability performance, and the bending failure load of the water pipe also exceeded the KS standards, so it is judged to be commercializable.

The Effects of Drying Temperature on Chromate Treatment for Electroplated Zinc (전기 아연도금용 유색 크로메이트에 대한 건조 온도의 영향)

  • Su-Byung Jeon;Ji-Won Choi;Byung-Ki Son;Injoon Son
    • Journal of the Korean institute of surface engineering
    • /
    • 제56권5호
    • /
    • pp.289-298
    • /
    • 2023
  • In this study, the effect of drying temperature on characteristics of the trivalent chromate film on electroplated zinc was investigated. An zinc-electroplated iron specimen with a thickness of 5 ㎛ was used for chromate treatment. Chromate treatment was conducted in a solution diluted 10 times from a mixture of Cr(NO3)3·9H20 360 g/L, Co(NO3)2·6H2O 60 g/L, Na2SO4 60 g/L, NH4F·HF 25 g/L, and NaOH 20 g/L. The zinc electroplated specimen was treated using the chromate solution with pH 2.0 at 25 ℃ for 60 s. Subsequently, chromate-treated samples were dried in an electric furnace for 2h with temperature varied from 25 to 125 ℃. The corrosion rate increased with the increase in the drying temperature, and the surface morphology of the chromate-treated film was observed using FE-SEM. When the drying temperature changed, the color of the chromate film changed from green to yellow, and the thickness of the film changed from 362 to 241 nm, respectively. Additionally, corrosion resistance was evaluated via a salt spray test.

Investigation of Electrical Resistance Properties in Surface-Coated Lightweight Aggregate (표면코팅 경량골재의 전기저항 특성)

  • Kim, Ho-Jin;Kim, Chang-Hyun;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • 제23권6호
    • /
    • pp.727-738
    • /
    • 2023
  • In concrete, the interface between the aggregate and cement paste is often the most critical factor in determining strength, representing the weakest zone. Lightweight aggregate, produced through expansion and firing of raw materials, features numerous surface pores and benefits from low density; however, its overall aggregate strength is compromised. Within concrete, diminished aggregate strength can lead to aggregate fracture. When applying lightweight aggregate to concrete, the interface strength becomes critical due to the potential for aggregate fracture. This study involved coating the surface of the aggregate with blast furnace slag fine powder to enhance the interfacial strength of lightweight aggregate. The impedance of test specimens was measured to analyze interface changes resulting from this surface modification. Experimental results revealed a 4% increase in compressive strength following the coating of the lightweight aggregate surface, accompanied by an increase in resistance values within the impedance measurements corresponding with strength enhancement.

Synthesis and Analysis of the Impact of Partial Mercury Replacement with Lead on the Structural and Electrical Properties of the Hg1-xPbxBa2Ca2Cu3O8+δ Superconductor

  • Kareem Ali Jasim;Chaiar Abdeen Zaynel Saleh;Alyaa Hamid Ali Jassim
    • Korean Journal of Materials Research
    • /
    • 제34권1호
    • /
    • pp.21-26
    • /
    • 2024
  • In this investigation, samples of the chemical (Hg1-xPbxBa2Ca1.8Mg0.2Cu3O8+δ) were prepared utilizing a solid-state reaction technique with a range of lead concentrations (x = 0.0, 0.05, 0.10, and 0.20). Specimens were pressed at 8 tons per square centimeter and then prepared at 1,138 K in the furnace. The crystalline structure and surface topography of all samples were examined using X-ray diffraction (XRD) and atomic force microscopy (AFM). X-ray diffraction results showed that all of the prepared samples had a tetragonal crystal structure. Also, the results showed that when lead was partially replaced with mercury, an increase in the lead value impacted the phase ratio, and lattice parameter values. The AFM results likewise showed excellent crystalline consistency and remarkable homogeneity during processing. The electrical resistivity was calculated as a function of temperature, and the results showed that all samples had a contagious behavior, as the resistivity decreased with decreasing temperature. The critical temperature was calculated and found to change, from 102, 96, 107, and 119 K, when increasing the lead values in the samples from 0.0 to 0.05, 0.10, and 0.20, respectively.