• Title/Summary/Keyword: furnace

Search Result 3,798, Processing Time 0.038 seconds

A Comparison of Methods to Remove the Boron Rich Layer Formed at Boron Doping Process for c-Si Solar Cell Applications (결정질 실리콘 태양전지의 적용을 위해 보론 확산 공정에서 생성되는 Boron Rich Layer 제거 연구)

  • Choi, Ju Yeon;Cho, Young Joon;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.665-669
    • /
    • 2015
  • We investigated and compared two methods of in-situ oxidation and chemical etching treatment (CET) to remove the boron rich layer (BRL). The BRL is generally formed during boron doping process. It has to be controlled in order not to degrade carrier lifetime and reduce electrical properties. A boron emitter is formed using $BBr_3$ liquid source at $930^{\circ}C$. After that, in-situ oxidation was followed by injecting oxygen of 1,000 sccm into the furnace during ramp down step and compared with CET using a mixture of acid solution for a short time. Then, we analyzed passivation effect by depositing $Al_2O_3$. The results gave a carrier lifetime of $110.9{\mu}s$, an open-circuit voltage ($V_{oc}$) of 635 mV at in-situ oxidation and a carrier lifetime of $188.5{\mu}s$, an $V_{oc}$ of 650 mV at CET. As a result, CET shows better properties than in-situ oxidation because of removing BRL uniformly.

The Effect of Combined Aggregates on Fluidity of the High Fluid Concrete Containing GGBFS (고로슬래그미분말을 혼입한 고유동콘크리트에서 골재조합이 콘크리트 유동성상에 미치는 영향에 관한 실험 연구)

  • Kim, Jae-Hun;Yoon, Sang-Chun;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.4
    • /
    • pp.79-86
    • /
    • 2003
  • The purpose of study is to offer base data for high fluid concrete mix property, as grasp effect of aggregate to reach much more effect for producing high fluid concrete. For this study, there are three types of combined aggregates, river sand + river aggregate(type A), river sand + crusted aggregate(type B), washed sea sand + crushed aggregate(type C) and take a factor, water-contents, water-binder ratio and S/a. And so, we had following conclusion, resulting application-ability of high fluid mortar by K-slump tester to use a handy consistency measuring instrument. And so, we had following conclusion, resulting application-ability of high fluid concrete by K-slump tester to use a handy consistency measuring instrument. 1) In cafe of regular water binder ratio, high fluid concrete suffered much effect of combined aggregates and water binder ratio. Range of water binder ratio by combined aggregates is w/b 0.4 downward(type A and B), w/b 0.35 downward(type C). 2) Water contents to need for producing high fluid concrete is minimum 170kg/$\textrm{m}^3$ without regard to combined aggregates. 3) The effect of S/a on high fluid concrete by combined aggregates is approximately S/a 50% (type A and B), s/a 50-55% (type C). 4) Consistency measuring of high fluid concrete by K-slump tester is possible and first indication value, high fluid concrete can be produced, is 6~10.5cm.

Compressive Strength and Fire Resistance Performance of High Strength Concrete with Recycled Fiber Power from Fiber-Reinforced Plastics (재활용 FRP 미분말을 혼입한 고강도 콘크리트의 압축강도 및 내화성능)

  • Lee, Seung Hee;Park, Jong Won;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • Increasing of waste FRP (fiber reinforced plastics) has caused environmental problems. Recently, the technology of making fibers from waste FRP, which can be used to reinforce the concrete, was developed and the reinforced concretes were tested to study the structural performance. The purpose of this study is to investigate the effect of the powder, obtained together with F-fiber from the waste FRP, on the compressive strength and the fire resistance performance as in the high strength concrete. Strength tests show that the use of recycled FRP powder does not reduce the compressive strength of high strength concrete if the volume fraction of FRP powder is less than 0.7%. Electric furnace test results also show that the use of recycled FRP powder may increase the fire resistance performance of high strength concrete significantly.

Development of Adsorbent for Heavy Metals by Activation of the Bark (활성화 수피를 이용한 중금속 흡착제 개발)

  • Park, Chang-Jin;Yang, Jae-E.;Ryu, Kyeong-Ryeol;Zhang, Yong-Seon;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.240-244
    • /
    • 2004
  • The objective of this research was to develop the adsorbent far heavy metals by activating the bark sample. Barks from pine tree with diameters of $2{\sim}4\;mm$ were activated in the muffle furnace under a high relative humidity condition at temperatures of $600{\sim}900^{\circ}C$. The removal efficiency of the activated bark (ACTBARK) for Cu and Cd was temperature dependent showing the order of $900^{\circ}C$ > $800^{\circ}C$ > $700^{\circ}C$ > $600^{\circ}C$. The critical temperature was considered to be $900^{\circ}C$ to become an efficient adsorbent for Cu and Cd. The bark samples activated at temperatures lower than $700^{\circ}C$ showed a less removal efficiency than the crude bark. The ACTBARK activated at $900^{\circ}C$ removed more Cu and Cd from solution than the commercial activated carbon and charcoal. The ACTBARK (activated at $900^{\circ}C$) adsorbed all of the Cu and Cd in solution with concentrations less than 150 mg/L. The selectivity of the ACTBARK was in the order of Cu > Zn > Ni > Pb > Fe > Cd > Mn.

Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer (곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究))

  • Keum, Dong Hyuk;Lee, Yong Kook;Lee, Kyou Seung;Han, Jong Ho
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF

Fractured Surface Morphology and Mechanical Properties of Ni-Cr Based Alloys with Mo Content for Dental Applications

  • Kim, Hyun-Soo;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.260-264
    • /
    • 2016
  • In this study, fractured surface morphology and mechanical properties of Ni-Cr-Mo alloys with various contents of Mo for dental material use have been evaluated by mechanical test. The alloys used were Ni-13Cr-xMo alloys with Mo contents of 4, 6, 8, and 10 wt.%, prepared by using a vacuum arc-melting furnace. Ni-13Cr-xMo alloys were used for mechanical test without heat treatment. The phase and microstructure of alloys using an X-ray diffraction (XRD) and optical microscopy (OM) were evaluated. To examine the mechanical properties of alloys according to microstructure changes, the tensile test and the hardness test were carried out using tensile tester. To understand the mechanism of Mo addition to Ni-Cr alloy on mechanical property, the morphology and fractured surfaces of alloys were investigated by field-emission scanning electron microscope (FE-SEM). As a result, 79Ni-13Cr-8Mo alloy was verified that the tensile strength and the hardness were better than others. Varying Mo content, the changes of microstructures of alloys were identified by OM and SEM and that of 79Ni-13Cr-8Mo alloy was proved fabricated well. Microstructures of alloys were changed depending on Mo content ratio. It has been observed that 8% alloy had the most suitable mechanical property for dental alloy.

Electrical/Mechanical Diagnosis of Local Deterioration in 600V Shielded Twist Pair Cable in a Nuclear Power Plant (원전용 600V 차폐 꼬임쌍선 케이블의 국부열화에 대한 전기적/기계적 진단)

  • Park, Myeongkoo;Kim, Kwangho;Lim, Chanwoo;Kim, TaeYoon;Kim, Hyunsu;Chai, Jangbom;Kim, Byungsung;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.203-210
    • /
    • 2017
  • In this paper, we propose a electrical/mechanical method to effectively diagnose the local deterioration of a 10m long power shielded twist pair cable defined by the American Wire Gauge (AWG) 14 specification using electrical/mechanical methods. The rapid deterioration of the cable proceeded by using the heating furnace, which is based on the Arrhenius equations proceeds from 0 to 35 years with the deteriorated equivalent model. In this paper, we introduce a method to diagnose the characteristics of locally deteriorated cable by using $S_{21}$ phase and frequency change rate measured by vector network analyzer which is the electrical diagnostic method. The measured $S_{21}$ phase and rate of change of frequency show a constant correlation with the number of years of locally deteriorated cable, thus it can be useful for diagnosing deteriorated cables. The change of modulus due to deterioration was measured by a modulus measuring device, which is defined by the ratio of deformation from the force externally applied to the cable, and the rate of modulus change also shows a constant correlation with the number of years of locally deteriorated cable. Finally, By combining the advantages of electrical/mechanical diagnostic methods, we can efficiently diagnose the local deterioration in the power shielded cable.

Evaluation of Anti-Corrosion Performance of FRP Hybrid Bar with Notch in GGBFS Concrete (GGBFS 콘크리트에 매립된 Notch를 가진 FRP Hybrid Bar의 부식저항성 평가)

  • Oh, Kyeong-Seok;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.51-58
    • /
    • 2016
  • Concrete structure is a construction material with durability and cost-benefit, however the corrosion in embedded steel causes a critical problem in structural safety. This paper presents an evaluation of chloride resistance and pull-off performance with various corrosion level. For the work, OPC(Ordinary Portland Cement) concrete and GGBFS(Ground Granulated Blast Furnace Slag) concrete are prepared with normal steel. Artificially notch induced FRP Hybrid Bar is also prepared and embedded in OPC concrete and accelerated corrosion test is performed. Through the test, FRP Hybrid Bar with notch is evaluated to have insignificant effect on pull-off capacity when corroded steel shows only 21% level of pull-off capacity. Furthermore GGBFS concrete with normal steel shows over 70% level of pull-off capacity due to reduced corrosion currency.

Strength and Pore Characteristics of Alkali-activated Slag-Red Mud Cement Mortar used Polymer According to Red Mud Content (레드머드 대체율에 따른 폴리머 혼입 알칼리활성화 슬래그-레드머드 시멘트모르타르의 강도 및 기공특성)

  • Kwon, Seung-Jun;Kang, Suk-Pyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.26-33
    • /
    • 2016
  • The alkali-slag-red mud(ASRC) cement belongs to clinker free cementitious material, which is made from alkali activator, blast-furnace slag(BFS) and red mud in designed proportion. This study is to investigate strength and pore characteristics of alkali-activated slag cement(NC), clinker free cementitious material, and ordinary portland cement(C) mortars using polymer according to red mud content. The results showed that the hardened alkali-activated slag-red mud cement paste was mostly consisted of C-S-H gel, being very fine in size and extremely irregular in its shape. So the hardened ASRC cement paste has lower total porosity, less portion of larger pore and more portion of smaller pore, as compared with those of hardened portland cement paste, and has higher strength within containing 10 wt.(%) of alkali-activated slag cement(NC) substituted by red mud.

A Study on the Separation of Mercury from Spent Mercury Batteries (단추형 폐수은 전지로부터 수은 분리에 관한 연구)

  • 손정수;박경호
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.32-37
    • /
    • 1994
  • Mercury in spent button type batteries can be separated and recovered with vacuum distillation method. It was found that mercury in the battery began to distill at $150^{\circ}C$ and organic substanced like a packing material was decomposed at$ 300^{\circ}C$. More than 99.9% of mercury contained in the battery was distiled and separated at about $250^{\circ}C$ and 20 torr with 8 hours' reaction time. The dissolution tests of the residue after distillation showed that mercury concentration in the solution were lower than 5 ppb and this values satisfied the environ-mental condition. Also as the furnace heating rate was above $15^{\circ}C$/min, it was found that the spent battery was destroyed because of increased pressure in the battery inside.

  • PDF