• Title/Summary/Keyword: fungicide spray program

Search Result 11, Processing Time 0.02 seconds

Development and Improvement of fungicidal spray program for apple production.

  • Lee, Hyun-Jik;Cho, Rae-Hong;Shin, Jung-Sup;Kim, Jung-Nam;Yoon, Ji-Hyun;Uhm, Jae-Youl
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.109.2-109
    • /
    • 2003
  • A basic spray program for apple in which fungicides are scheduled to spray at 15-day interval from petal fall to late August was formulated on the properties of several selected fungicides. In order to improve it, experimental plots, completely randomized block with 3 replications, were prepared in an orchard of 15 years old Fuji cultivar, and the spray programs in which only one chemical in the basic spray program was substituted with others were applied to each plot. It was revealed that only single substitution of the fungicide in the basic spray program makes a great differences in the control of white rot and bitter rot, and that the control property of the fungicides against the two diseases was quite variable even by the time of application. A simila! ! r trial was conducted in 2002 with a new basic spray program that was formulated with fungicides that have shown best control in each spraying time in the previous trial, similar results were obtained. Applying this method, the usefulness of certain fungicide in the spray program for apple could be properly assessed. Anthracnose of Robinia pseudo-acacia L. caused by Collectotrichum spp.

  • PDF

Development of a 15-day Interval Spraying Program for Controlling Major Apple Diseases

  • Lee, Dong-Hyuck;Kim, Dae-Hee;Shin, Ho-Cheol;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.439-446
    • /
    • 2008
  • A fungicidal spray program for effective control of three major apple diseases in Korea (white rot, bitter rot, and Marssonina blotch) was developed. This was based on our previous studies showing that application of ergosterol biosynthesis inhibitors (EBIs) in early or mid-August can eradicate white rot infection in fruit and that some protective fungicides show after-infection activity against white rot. The basic spray program focused on control of white rot, the main target disease, and the fungicides were sprayed at 15-day intervals from petal fall to late August using fungicides that show after-infection and EBI activity. The basic spray program was modified over 4 successive years to improve control efficacy against bitter rot and Marssonina blotch, which sometimes cause as much damage as white rot. Modifications to the regime were made every year by replacing one fungicide in the basic program at a specific spraying time. Substitution of only one fungicide in the spray program, even early in the growing season, greatly influenced the final disease incidence at harvest. Applying this principle, a moderately efficient spray program for cv. Fuji that increased the spray interval from 10 to 15 days and thus reduced the number of sprays required per crop season was developed.

After-infection Activity of Protective Fungicides against Apple White Rot

  • Lee, Dong-Hyuk;Kim, Dae-Hee;Woo, Hyun;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.23 no.3
    • /
    • pp.166-173
    • /
    • 2007
  • In a trial to select suitable fungicides for developing a spray program that can control apple white rot effectively, after-infection activities in some protective fungicides were detected. Six fungicides, mancozeb, propineb, benomyl, folpet, azoxystrobin and iminoctadine-triacetate, which had been extensively used in apple orchards, were sprayed on 12-year-old apple trees (cv. Fuji) at 15-day intervals from late May to late July. Disease incidences and infection frequencies of the fruit bagged just before and soon after each spray were examined. When the infection frequency or disease incidence of the fruit bagged after each spraying of fungicide was significantly lower than those of the fruit bagged before spraying, the fungicides appeared to confer after-infection activity. The six fungicides showed diverse activities on white rot: folpet showed after-infection activity on disease development, iminoctadine-triacetate showed after-infection activity on infection, azoxystrobin showed after-infection activity on disease development and infection, and mancozeb, propineb and benomyl showed no distinct activity. The activity of a fungicide became much higher when it was sprayed alternately with other fungicide rather than successive spraying of the same fungicide. Analysis of the properties of these protective fungicides could lead to the development of a highly effective spray program against white rot.

Development of Fungicide Spray Program for the Apples to Be Exported to the United States of America (미국 수출용 사과 재배를 위한 살균제 살포력의 개발)

  • 엄재열;이동혁;이상계
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.17-29
    • /
    • 1995
  • This study was conducted from 1991 to 1993 to develop a fungicidal spray program for the apples exportable to the United States of America, in which quarantine and pesticide residue in agricultural products are strictly regulated. In 1991, 2 spray schedules were applied to an orchard, in one of which the 7 fungicides registered for apple both in Korea and U.S. were used, and in the other of which the Bordeaux mixture for which the tolerance was exempted in U.S. was used 2 times along with those 7 fungicides. The apple white rot and fruit infection by Alternaria mali were not effectively controlled by the 7 fungicides alone; however, the control efficacy was raised by adding the Bordeaux mixture to the spray schedule. In 1992, 4 spray schedules were applied in which the kinds of fungicides and spray intervals were different one another. The results suggested that an effective spray program can be developed by adopting the Bordeaux mixture for 3 times or adopting the imminoctadine-triacetate which has not tolerance level in U.S. for same times in the vulnerable stage of apple white rot and alternaria blotch. In spite of the high efficacies against major apple diseases, the Bordeaux mixture could not be recommended to the apple growers due to the various defects such as restrictions in compatibility with insecticides and acaricides, troublesomeness in preparation and spray, especially the harmful effect on the finish of Fuji apples. In 1993, a spray program adopting 3 times of imminoctadine-triacetate during the growing season of apple was developed, which not only can effectively control the major apple diseases but also avoid the pesticide residue problems if it was sprayed 2 or 3 times after bagging. On the basis of the 3 years results, a basic fungicide spray program was formulated in which 1~3 times of imminoctadine-triacetate and 1~2 times of bitertanol were adopted in addition of the 7 common fungicides registered in both countries. In the results of application of the spray schedule to the actual farming in the 4 areas of Kyungpook Province in 1994, no noticeable defects were detected at the first year trial. However, this spray program will be continuously evaluated and modified to obtain better control efficacies against major apple diseases.

  • PDF

Reducing Fungicidal Spray Frequency for Major Apple Diseases by Increasing the Spray Interval from 15 to 25 days

  • Lee, Dong-Hyuck;Shin, Ho-Cheol;Cho, Rae-Hong;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.270-279
    • /
    • 2009
  • During the course of a study to develop a spraying program at 15-day spray intervals, two important findings were identified allowing for further reduction of spray frequency by increasing the spray interval. In evaluating the contribution of fungicides from a 15-day spray interval program, control of white rot, which is of prime importance in Korea, was not affected, in spite of the extended spray interval caused by omitting the fungicides during the season. In another experiment assessing the duration of the protective activities of several key fungicides used in the 15-day spray interval program, infection control was maintained for almost 30 days for some fungicide. Based on these two findings, a basic spraying program with a 25-day spray interval was developed. This program was modified for four successive years to improve the control efficacy against bitter rot and Marssonina blotch, which sometimes causes as much damage as white rot.

Chemical Control of Leaf Spot of Date Palm (Phoenix dactylifera) in Sultanate of Oman

  • Livingston, Sam;Mufargi, Khamis-Al;Sunkeli, Mehmood-Al
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.165-167
    • /
    • 2002
  • Date palm (Phoenix dactylifera) is an important fruit and cash crop in Sultanate of Oman, occupying nearly 60% of the total cultivated area. However, leaf spots caused by Mycosphaerella tassiana, Alternaria spp., and Dreshcleri sp. have become a threat to date palm's cultivation in recent years. In this study, a field experiment was conducted to find out a suitable chemical spray program to control the disease. A prophylactic spray schedule with mancozeb (Dithane M45), copper oxychloride (Champion), and mancozeb+copper (Trimiltox) effectively controlled the disease when applied at a time when the disease severity index (DSI) was low, ranging from 0 to 1.68. Meanwhile, the disease did not decrease, but instead increased gradually, when the fungicide combination was applied when DSI was high, ranging from 1.78 to 5.37. It was concluded that fungicides should be applied at the early stage or before disease initiation in order to control the disease effectively.

Fungicide Spray Program to Reduce Application in Anthracnose of Strawberry (살균제 살포횟수 감소를 위한 딸기 탄저병 방제프로그램)

  • Nam, Myeong-Hyeon;Kim, Hyeon-Suk;Nam, Yun-Gyu;Peres, N.A.;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.295-301
    • /
    • 2011
  • The effect of various fungicides on anthracnose of strawberry, caused by Colletotrichum gloeosporioides, was determined in vitro, and in greenhouse and field trials. The $EC_{50}$ values of benomyl were clearly different between two sensitive and resistant groups of isolates. Iminoctadine tris had lower $EC_{50}$ values than mancozeb and propineb as protective fungicides and the response of mancozeb, propineb and azoxystrobin was variable depending on the isolate. In the greenhouse, pre- and post- inoculation fungicide applications significantly reduced disease compared to the non-treated control. Propineb, mancozeb and azoxystrobin were effective in controlling the disease when applied prior to inoculation. Metconazole and prochloraz-Mn treatments as ergosterol biosynthesis-inhibiting fungicides had the lowest incidence of anthracnose. In the nursery field trials in 2009 and 2010, the reduced fungicide spray program provided similar levels of disease control compared to the calendar-based applications with captan. A reduced spray program based on efficacious fungicides such as prochloraz-Mn will be useful for strawberry growers and provide more options for controlling anthracnose in Korea.

Modeling for Prediction of Potato Late Blight (Phytophthora infestans) (감자역병 진전도 예측모형 작성)

  • 안재훈;함영일;신관용
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.331-338
    • /
    • 1998
  • To develop the model for prediction of potato late blight progress, the relationship between severity index of potato late blight transformed by the logit and Gompit transformation function and cumulative severity value (CSV) processing weather data during growing period in Taegwallyeong alpine area, 1975 to 1992 were examined. When logistic model and Gompertz model were compared by determining goodness of fit for progressive degree of late blight using CSV as independent variable, the coefficients of determination were higher as 0.742 in the logistic model than 0.680 in the Gompertz model. Parameters in logistic model were composed of progressive rate and initial value of logistic model. Initial value was calculated in -3.664. The progressive rate of potato late blight was 0.137 in cv. Superior, 0.136 in cv. Irish Cobbler, and 0.070 in cv. Jopung without fungicide sprays. According to in crease of the number of spray times the progressive rate was lowered, was 0.020 in cv. Superior under the conventional program of fungicide sprays, 10 times sprays during cropping season. Equation of progressive rate, b1=0.0088 ACSV-0.033 (R2=0.976), was written by examining the relationship between the parameters of progressive rate of late blight and the average CSV (ACSV) quantifing weather information. By estimating parameters of logistic function, model able to describe the late blight progress of potato, cv. Superior was formulated in Y=4/(1+39.0·exp((0.0088 ACSV-0.033)·CSV).

  • PDF

Optimum Spray Program of Preventive Fungicides for the Control of Postharvest Fruit Rots of Kiwifruit (참다래 저장병 예방약제 최적 살포 체계 확립)

  • Koh, Young-Jin;Lee, Jae-Goon;Hur, Jae-Seoun;Park, Dong-Man;Jung, Jae-Sung;Yu, Yong-Man
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.205-208
    • /
    • 2003
  • Fungicides of tebuconazole wp, iprodione wp and flusilazole wp were applied for the control of postharvest fruit rots of kiwifruit (Actinidia deliciosa) in the field in 2000 and 2001. More than 3 consecutive applications of these fungicides from the late June with 10-day-interval successfully controlled the diseases. It was found in the field trial in 2002 that 4 consecutive spays from mid of June with 10-day-interval was found to be the most effective application program for tebuconazole wp, iprodione wp and flusilazole wp, The results suggested that currently registered fungicides of benomyl wp and thiophanate-methyl wp can be substituted by tebuconazole wp, iprodione wp and flusilazole wp for the control of the diseases in Korea. Use of these fungicides can restrain emergence of fungicide resistant strains of postharvest fruit rot pathogens with benefit of reduced application of chemicals for food safety and environmental conservation.

Field Validation of PBcast in Timing Fungicide Sprays to Control Phytophthora Blight of Chili Pepper (고추 역병 방제시기 결정을 위한 PBcast 예측모델 타당성 포장 평가)

  • Ahn, Mun-Il;Do, Ki Seok;Lee, Kyeong Hee;Yun, Sung Chul;Park, Eun Woo
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.229-238
    • /
    • 2020
  • Field validation of PBcast, an infection risk model for Phytophthora blight of pepper, was conducted through a designed field experiment in 2012 and 2013. Conduciveness of weather conditions at 26 locations in Korea in 2014-2017 was also evaluated using PBcast. The PBcast estimated daily infection risk (IR) of Phytophthora capsici based on weather and soil texture data. In the designed filed experiment, four treatments including routine sprays at 7-day intervals (RTN7), forecast-based sprays when IR reached 200 (IR200) and 224 (IR224), and no spray (CTRL) were compared in terms of disease incidence and number of sprays recommended for disease control. In 2012, IR had reached over 200 twice, but never reached 224. In 2013, IR had reached over 200 three times and once higher than 224. The RTN7 plots were sprayed 17 and 18 times in 2012 and 2013, respectively. Weather conditions throughout the country were generally conducive for Phytophthora blight and 3-4 times of fungicide sprays would have been reduced if the PBcast forecast information was adopted in the decision-making for fungicide sprays. In conclusion, the PBcast forecast would be useful to reduce fungicide applications without losing the disease control efficacy to protect pepper crop from Phytophthora blight.